首页> 外文期刊>Future generation computer systems >A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification
【24h】

A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification

机译:一种用于心律失常分类的新型心电图特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a novel approach to detect cardiac arrhythmias in electrocardiograms (ECG). The proposal focuses on different feature extractors and machine learning methods. The feature extraction techniques evaluated were Fourier, Goertzel, Higher Order Statistics (HOS), and Structural Co-Occurrence Matrix (SCM). As far as the authors know, this is the first time that SCM has been applied to the feature extraction task with ECG signals. Four well-known classifiers, commonly referred to in the literature (Support Vector Machine, Multi-Layer Perceptron, Bayesian, and Optimum-Path Forest) were tested and we compared our results with six classical feature extraction methods. Furthermore, the Association for the Advancement of Medical Instrumentation protocol was adopted and we made use of the MIT-BIH Arrhythmia Database for producing reliable results for clinical analysis. The confidence level to identify heart dysrhythmia in our results was 2% greater than other approaches in the literature. The proposed system is 1.3% more accurate than the best approach reported to date, and is 10(6) times faster. blackln short, it is clinical reliable to use HOS for describing types of arrhythmia, since achieved 94.3% of accuracy. (C) 2019 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们提出了一种新颖的方法来检测心电图(ECG)中的心律不齐。该提案侧重于不同的特征提取器和机器学习方法。评估的特征提取技术为傅立叶,Goertzel,高阶统计量(HOS)和结构共现矩阵(SCM)。据作者所知,这是第一次将SCM应用于具有ECG信号的特征提取任务。测试了文献中常用的四个著名分类器(支持向量机,多层感知器,贝叶斯和最优路径森林),并将我们的结果与六种经典特征提取方法进行了比较。此外,采用了医学仪器促进协会协议,并且我们利用MIT-BIH心律失常数据库为临床分析提供了可靠的结果。在我们的结果中识别出心律不齐的置信度比文献中的其他方法高2%。拟议的系统比迄今为止报告的最佳方法准确度高1.3%,并且快10(6)倍。简而言之,使用HOS描述心律失常的类型在临床上是可靠的,因为它可以达到94.3%的准确度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Future generation computer systems》 |2019年第8期|564-577|共14页
  • 作者单位

    Inst Fed Ceara, Lab Processamento Imagens Sinais & Comp Apl, Fortaleza, Ceara, Brazil|Univ Fed Ceara, Programs Posgrad Engn Teleinformat, Fortaleza, Ceara, Brazil;

    Inst Fed Ceara, Lab Processamento Imagens Sinais & Comp Apl, Fortaleza, Ceara, Brazil|Univ Fed Ceara, Programs Posgrad Engn Teleinformat, Fortaleza, Ceara, Brazil;

    Inst Fed Ceara, Lab Processamento Imagens Sinais & Comp Apl, Fortaleza, Ceara, Brazil;

    Inst Fed Ceara, Lab Processamento Imagens Sinais & Comp Apl, Fortaleza, Ceara, Brazil;

    Inst Fed Ceara, Lab Processamento Imagens Sinais & Comp Apl, Fortaleza, Ceara, Brazil|Inst Fed Ceara, Programa Posgrad Ciencia Comp, Fortaleza, Ceara, Brazil|Univ Fed Ceara, Programs Posgrad Engn Teleinformat, Fortaleza, Ceara, Brazil;

    Univ Fortaleza, Programa Posgrad Informat Aplicada, Fortaleza, Ceara, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heart disease; Cardiac arrhythmia; ECG; Feature extraction; Classification; Machine learning;

    机译:心脏病;心律失常;心电图;特征提取;分类;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号