首页> 外文期刊>Future generation computer systems >A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification
【24h】

A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification

机译:一种新型心电图特征提取心性心律失常分类方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a novel approach to detect cardiac arrhythmias in electrocardiograms (ECG). The proposal focuses on different feature extractors and machine learning methods. The feature extraction techniques evaluated were Fourier, Goertzel, Higher Order Statistics (HOS), and Structural Co-Occurrence Matrix (SCM). As far as the authors know, this is the first time that SCM has been applied to the feature extraction task with ECG signals. Four well-known classifiers, commonly referred to in the literature (Support Vector Machine, Multi-Layer Perceptron, Bayesian, and Optimum-Path Forest) were tested and we compared our results with six classical feature extraction methods. Furthermore, the Association for the Advancement of Medical Instrumentation protocol was adopted and we made use of the MIT-BIH Arrhythmia Database for producing reliable results for clinical analysis. The confidence level to identify heart dysrhythmia in our results was 2% greater than other approaches in the literature. The proposed system is 1.3% more accurate than the best approach reported to date, and is 10(6) times faster. blackln short, it is clinical reliable to use HOS for describing types of arrhythmia, since achieved 94.3% of accuracy. (C) 2019 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们提出了一种新的方法来检测心电图(ECG)中的心脏心律失常。该提案侧重于不同的特征提取器和机器学习方法。评估的特征提取技术是傅立叶,GOERTZEL,高阶统计(HOS)和结构共生矩阵(SCM)。就作者知道,这是第一次使用ECG信号应用于SCM的特征提取任务。测试了四种着名的分类器,通常在文献中提到(支持向量机,多层的Perceptron,贝叶斯和最佳路径森林),并将我们的结果与六种古典特征提取方法进行了比较。此外,采用了用于医疗仪表协议的进步协会,并使用MIT-BIH心律失常数据库来生产可靠的临床分析结果。在我们的结果中识别心肌不良血症的置信水平比文献中的其他方法大2%。所提出的系统比迄今为止报告的最佳方法更准确,速度速度为10(6)倍。 Blackln Short,它是使用HOS描述心律失常类型的临床可靠性,因为获得了94.3%的准确性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号