首页> 外文期刊>Future generation computer systems >Social acquaintance based routing in Vehicular Social Networks
【24h】

Social acquaintance based routing in Vehicular Social Networks

机译:车载社交网络中基于社交熟人的路由

获取原文
获取原文并翻译 | 示例

摘要

The concept of Internet of Things (IoT) provides us the opportunity to interconnect different objects with the communication and processing capabilities for a diverse range of applications. Recently, Vehicular Social Networks (VSNs) have been introduced through the combination of relevant concepts from two primary disciplines, i.e., social networks and Vehicular Ad hoc Networks (VANETs). Inspired from the social acquaintance in our daily life, we present a Social Acquaintance based Routing Protocol (SARP) for VSNs, which collectively consider three social feature metrics to make a forwarding decision. Proposed protocol aims to reduce End-to-End delay and improve packet delivery ratio in VSNs. Additionally, SARP overcomes the shortcoming of topology based routing and optimum local situation of geographically based routing protocols by considering the global and local community acquaintance of nodes. We performed extensive simulations under constant node density with different mobility speed and constant speed with varying node density to study the effect of node mobility speed and density on end-to-end delay and packet delivery ratio. The simulation results show that SARP outperforms GPSR by 22% and 26% in terms of end-to-end delay and packet delivery ratio respectively. Also, SARP outperforms AOVD in terms of end-to-end delay. (C) 2017 Elsevier B.V. All rights reserved.
机译:物联网(IoT)的概念为我们提供了将不同对象与通信和处理功能互连的机会,以用于各种应用程序。最近,通过结合来自两个主要学科的相关概念来引入车辆社交网络(VSN),即,社交网络和车辆自组织网络(VANET)。受日常生活中社交认识的启发,我们提出了一种针对VSN的基于社交认识的路由协议(SARP),该协议共同考虑了三个社交功能指标以做出转发决策。提出的协议旨在减少端到端的延迟并提高VSN中的数据包传输率。此外,SARP通过考虑节点的全局和本地社区了解,克服了基于拓扑的路由和基于地理位置的路由协议的最佳局部情况的缺点。我们在具有不同移动速度的恒定节点密度和具有不同节点密度的恒定速度下进行了广泛的仿真,以研究节点移动速度和密度对端到端延迟和数据包传输率的影响。仿真结果表明,SARP在端到端延迟和数据包传输率方面分别比GPSR快22%和26%。同样,在端到端延迟方面,SARP优于AOVD。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号