首页> 外文期刊>Future generation computer systems >A method to detect data outliers from smart urban spaces via tensor analysis
【24h】

A method to detect data outliers from smart urban spaces via tensor analysis

机译:通过张量分析从智慧城市空间中检测数据异常值的方法

获取原文
获取原文并翻译 | 示例

摘要

With the increasing amount of data available nowadays, especially in urban spaces, it has become critical extracting knowledge to get insight from all this big data. This need becomes even more important and less obvious to supply when these data have discrepant events (i.e., outliers). Here we propose a method to explore the multiway nature of urban spaces data in outliers detection which includes three stages: (i) dimensionality reduction, where we model data as a 3rd-order tensor; from this reduction, we extract a set of latent factors to obtain the best fit for the next classification step; (ii) classification of latent factors, where the latent factors from the stage (i) are used to generate instances of similar events in monitoring smart urban spaces which result in high-quality clusters from the factorization; and (iii) combining steps (i) and (ii) to generate a refined urban space pattern identification model. We analyzed a real large-scale dataset with valuable data captured and streamed by urban sensors from 4 cities: Elda and Rois (Spain), Nuremberg (Germany), and Tallinn (Estonia). Our results allow us to conclude there is a kind of cyclic time patterns of urban sensing.
机译:随着当今可用数据量的增加,尤其是在城市空间中,提取知识以从所有这些大数据中获取洞见已变得至关重要。当这些数据具有不一致的事件(即异常值)时,提供这种需求变得更加重要,并且变得不那么明显。在这里,我们提出了一种在异常值检测中探索城市空间数据多路性质的方法,该方法包括三个阶段:(i)降维,其中我们将数据建模为三阶张量;从这种减少中,我们提取了一组潜在因素,以获得最适合下一步分类的步骤; (ii)潜在因素的分类,其中阶段(i)中的潜在因素用于在监视智能城市空间时生成类似事件的实例,从而通过分解获得高质量的集群; (iii)结合步骤(i)和(ii)生成完善的城市空间格局识别模型。我们分析了一个真实的大规模数据集,并收集了来自四个城市的城市传感器捕获并传输的有价值的数据:埃尔达和罗伊斯(西班牙),纽伦堡(德国)和塔林(爱沙尼亚)。我们的结果使我们得出结论,认为城市感知存在一种周期性的时间模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号