首页> 外文期刊>Future generation computer systems >Structure-aware Mashup service Clustering for cloud-based Internet of Things using genetic algorithm based clustering algorithm
【24h】

Structure-aware Mashup service Clustering for cloud-based Internet of Things using genetic algorithm based clustering algorithm

机译:基于遗传算法的聚类算法对基于云的物联网的结构感知混搭服务聚类

获取原文
获取原文并翻译 | 示例

摘要

An increasing number of physical objects connected to the Internet makes it possible for smart things to access all kinds of cloud services. Mashup technology has been an effective way to the rapid IoT (Internet of Things) application development. However, the number of Mashup services (IoT applications) being so large makes how to discover the desired loT applications accurately and efficiently become a problem. Service clustering technology can facilitate service discovery effectively, and many different approaches have been proposed. However, many of them only use semantic similarities to guide clustering operations and need the configuration of the number of clusters. Structural similarities are orthogonal to semantic similarities. But they have never been used in service clustering approaches. In this paper, we propose a novel Mashup service clustering approach based on a structural similarity and a genetic algorithm based clustering algorithm. First, it applies a two-mode graph to describe Mashups, Web APIs, and their relations formally. Second, it applies the SimRank algorithm to quantify the structural similarity between every pair of Mashup services. Finally, it introduces a genetic algorithm based clustering algorithm to organize Mashup services into clusters effectively and determines the number of clusters automatically. Empirical results on a real-world Mashup services data set collected from ProgrammableWeb demonstrate that our approach can cluster Mashup services efficiently without any constraints on the number of clusters, and its performance is better than other Mashup service clustering approaches based on semantic metrics. (C) 2018 Elsevier B.V. All rights reserved.
机译:越来越多的连接到Internet的物理对象使智能事物可以访问各种云服务。混搭技术已经成为快速发展IoT(物联网)应用程序的有效方法。但是,Mashup服务(IoT应用程序)的数量如此之多,使得如何准确,高效地发现所需的loT应用程序成为一个问题。服务集群技术可以有效地促进服务发现,并且已经提出了许多不同的方法。但是,它们中的许多仅使用语义相似性来指导集群操作,并且需要配置集群数量。结构相似度与语义相似度正交。但是它们从未在服务集群方法中使用过。在本文中,我们提出了一种基于结构相似性和基于遗传算法的聚类算法的新型Mashup服务聚类方法。首先,它应用两模式图来正式描述Mashup,Web API及其关系。其次,它应用SimRank算法来量化每对Mashup服务之间的结构相似性。最后,介绍了一种基于遗传算法的聚类算法,可以将Mashup服务有效地组织到集群中,并自动确定集群数量。从ProgrammableWeb收集的真实Mashup服务数据集的经验结果表明,我们的方法可以有效地对Mashup服务进行聚类,而对集群的数量没有任何限制,并且其性能优于其他基于语义指标的Mashup服务聚类方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号