首页> 外文期刊>Future generation computer systems >PWLM~3-based automatic performance model estimation method for HDFS write and read operations
【24h】

PWLM~3-based automatic performance model estimation method for HDFS write and read operations

机译:基于PWLM〜3的HDFS读写操作自动性能模型估计方法

获取原文
获取原文并翻译 | 示例

摘要

There is a growing need for the development of an automatic performance model estimation method for Hadoop Distributed File System (HDFS) write and read (W/R) operations in order to deal with constant software improvement and updates, parameter configuration changes, hardware heterogeneity, and their Quality of Service (QoS) evaluation. Extant research based on single linear system model has a limited ability to explain the performance variations due to changes in HDFS parameters such as block size. These variations reveal some typical characteristics of nonlinear systems and are an obstacle in achieving effective automatic performance estimation. In order to deal with this challenge, a piecewise-linear multi-model modeling (PWLM~3 )-based automatic performance model estimation method is proposed for HDFS W/R performance. In the proposed method, a standard model base is built to standardize the model representation of every submodel. Moreover, a cluster quality assessment strategy is applied to evaluate the optimal number of submodels, and a submodel selection strategy is implemented to construct performance model candidates and improve the computation efficiency of the proposed method. In addition, Levenberg-Marquardt (LM) and Universal Global Optimization (UGO) algorithms are adopted to estimate the values of switch points and identify undetermined parameters of performance model candidates. Then the performance model is selected among these candidates according to Root Mean Squared Error (RMSE) indicator. Experimental results demonstrate that the PWLM~3-based performance model provides a good understanding and description of nonlinear characteristics of HDFS W/R performance and achieves better identification precision than a single linear system model-based one.
机译:越来越需要开发一种针对Hadoop分布式文件系统(HDFS)读写(W / R)操作的自动性能模型估算方法,以应对不断的软件改进和更新,参数配置更改,硬件异构性,及其服务质量(QoS)评估。基于单一线性系统模型的现有研究具有有限的能力来解释由于HDFS参数(例如块大小)的变化而导致的性能变化。这些变化揭示了非线性系统的一些典型特征,并且是实现有效的自动性能估计的障碍。为了应对这一挑战,针对HDFS W / R性能,提出了一种基于分段线性多模型建模(PWLM〜3)的自动性能模型估计方法。在提出的方法中,建立标准模型库以标准化每个子模型的模型表示。此外,采用群集质量评估策略来评估子模型的最佳数量,并采用子模型选择策略来构建性能模型候选并提高所提出方法的计算效率。此外,采用Levenberg-Marquardt(LM)和通用全局优化(UGO)算法来估计开关点的值并识别性能模型候选者的不确定参数。然后,根据均方根误差(RMSE)指标从这些候选项中选择性能模型。实验结果表明,基于PWLM〜3的性能模型可以很好地理解和描述HDFS W / R性能的非线性特征,并且比基于单个线性系统模型的模型具有更好的识别精度。

著录项

  • 来源
    《Future generation computer systems》 |2015年第9期|127-139|共13页
  • 作者单位

    MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, China,Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China;

    MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, China,Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, China;

    MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, China,Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China;

    MOE Key Lab for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, China,Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud storage service; QoS; HDFS; Performance modeling; Nonlinear system;

    机译:云存储服务;服务质量HDFS;性能建模;非线性系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号