首页> 外文期刊>Future generation computer systems >Using imbalance metrics to optimize task clustering in scientific workflow executions
【24h】

Using imbalance metrics to optimize task clustering in scientific workflow executions

机译:使用不平衡指标来优化科学工作流执行中的任务聚类

获取原文
获取原文并翻译 | 示例

摘要

Scientific workflows can be composed of many fine computational granularity tasks. The runtime of these tasks may be shorter than the duration of system overheads, for example, when using multiple resources of a cloud infrastructure. Task clustering is a runtime optimization technique that merges multiple short running tasks into a single job such that the scheduling overhead is reduced and the overall runtime performance is improved. However, existing task clustering strategies only provide a coarse-grained approach that relies on an over-simplified workflow model. In this work, we examine the reasons that cause Runtime Imbalance and Dependency Imbalance in task clustering. Then, we propose quantitative metrics to evaluate the severity of the two imbalance problems. Furthermore, we propose a series of task balancing methods (horizontal and vertical) to address the load balance problem when performing task clustering for five widely used scientific workflows. Finally, we analyze the relationship between these metric values and the performance of proposed task balancing methods. A trace-based simulation shows that our methods can significantly decrease the runtime of workflow applications when compared to a baseline execution. We also compare the performance of our methods with two algorithms described in the literature.
机译:科学的工作流程可以由许多精细的计算粒度任务组成。例如,当使用云基础架构的多个资源时,这些任务的运行时间可能比系统开销的持续时间短。任务群集是一种运行时优化技术,可以将多个短期运行的任务合并到一个作业中,从而减少了调度开销并提高了整体运行时性能。但是,现有的任务群集策略仅提供一种粗粒度的方法,该方法依赖于过于简化的工作流模型。在这项工作中,我们研究了导致任务聚类的运行时不平衡和依赖不平衡的原因。然后,我们提出了量化指标来评估两个不平衡问题的严重性。此外,我们提出了一系列任务平衡方法(水平和垂直),以解决针对五个广泛使用的科学工作流执行任务聚类时的负载平衡问题。最后,我们分析了这些指标值与建议的任务平衡方法的性能之间的关系。基于跟踪的仿真表明,与基线执行相比,我们的方法可以大大减少工作流应用程序的运行时间。我们还将文献中描述的两种算法与我们的方法的性能进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号