首页> 外文期刊>Future generation computer systems >Causal inference from noisy time-series data - Testing the Convergent Cross-Mapping algorithm in the presence of noise and external influence
【24h】

Causal inference from noisy time-series data - Testing the Convergent Cross-Mapping algorithm in the presence of noise and external influence

机译:嘈杂的时间序列数据的因果推论-在存在噪声和外部影响的情况下测试收敛交叉映射算法

获取原文
获取原文并翻译 | 示例

摘要

Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of detailed models. This has implications for the understanding of complex information systems, as well as complex systems more generally. This article assesses the strengths and weaknesses of the CCM algorithm by varying coupling strength and noise levels in a model system consisting of two coupled logistic maps. As expected, it is found that CCM fails to accurately infer coupling strength and even causality direction in strongly coupled synchronized time-series, but surprisingly also in the presence of intermediate coupling. It is further found that the presence of noise reduces the level of cross-mapping fidelity, where the converged value of the CCM correlation decreases roughly linearly as a function of the noise, while the convergence rate of the CCM correlation shows little sensitivity to noise. The article proposes controlled noise injections in intermediate-to-strongly coupled systems could enable more accurate causal inferences. Initial investigation of an external driving signal indicates robustness of CCM toward this potentially confounding influence. Given the inherent noisy nature of real-world systems, the findings enable a more accurate evaluation of CCM applicability and the article advances suggestions on how to overcome the method's weaknesses.
机译:收敛交叉映射(CCM)在缺乏详细模型的情况下显示出执行因果推理的巨大潜力。这对于理解复杂的信息系统以及更一般的复杂系统具有影响。本文通过改变由两个耦合逻辑图组成的模型系统中的耦合强度和噪声水平,评估了CCM算法的优缺点。正如预期的那样,发现CCM无法在强耦合同步时间序列中准确推断耦合强度甚至因果关系方向,但令人惊讶的是,在存在中间耦合的情况下。进一步发现,噪声的存在降低了交叉映射保真度的水平,其中CCM相关的收敛值根据噪声而大致线性地减小,而CCM相关的收敛率几乎不显示对噪声的敏感性。该文章提出,在中到强耦合系统中进行受控的噪声注入可以实现更精确的因果推断。外部驱动信号的初步研究表明CCM对这种潜在的混杂影响具有鲁棒性。考虑到实际系统固有的噪声性质,研究结果可以更准确地评估CCM的适用性,并且本文就如何克服该方法的缺点提出了建议。

著录项

  • 来源
    《Future generation computer systems》 |2017年第8期|52-62|共11页
  • 作者单位

    Department of Economics and Business Economics, Aarhus University, Fuglesangs Alle 4, 8210 Aarhus V, Denmark,Interacting Minds Centre, Aarhus University, Jens Chr. Skous Vej 4, 8000 Aarhus C, Denmark;

    Center for Semiotics, Aarhus University, Jens Chr. Skous Vej 2, 8000 Aarhus C, Denmark,Interacting Minds Centre, Aarhus University, Jens Chr. Skous Vej 4, 8000 Aarhus C, Denmark;

    Interacting Minds Centre, Aarhus University, Jens Chr. Skous Vej 4, 8000 Aarhus C, Denmark,Center for Semiotics, Aarhus University, Jens Chr. Skous Vej 2, 8000 Aarhus C, Denmark;

    Interacting Minds Centre, Aarhus University, Jens Chr. Skous Vej 4, 8000 Aarhus C, Denmark;

    Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark,AU Ideas Center for Community Driven Research, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convergent Cross-Mapping; Causality; Logistic map; Noise; Time-series analysis; Nonlinear dynamics; Complex systems;

    机译:收敛交叉映射;因果关系;物流地图;噪声;时间序列分析;非线性动力学;复杂系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号