首页> 外文期刊>Future generation computer systems >Comparing time series with machine learning-based prediction approaches for violation management in cloud SLAs
【24h】

Comparing time series with machine learning-based prediction approaches for violation management in cloud SLAs

机译:将时间序列与基于机器学习的预测方法进行比较,以进行云SLA中的违规管理

获取原文
获取原文并翻译 | 示例

摘要

In cloud computing, service level agreements (SLAs) are legal agreements between a service provider and consumer that contain a list of obligations and commitments which need to be satisfied by both parties during the transaction. From a service provider’s perspective, a violation of such a commitment leads to penalties in terms of money and reputation and thus has to be effectively managed. In the literature, this problem has been studied under the domain of cloud service management. One aspect required to manage cloud services after the formation of SLAs is to predict the future Quality of Service (QoS) of cloud parameters to ascertain if they lead to violations. Various approaches in the literature perform this task using different prediction approaches however none of them study the accuracy of each. However, it is important to do this as the results of each prediction approach vary according to the pattern of the input data and selecting an incorrect choice of a prediction algorithm could lead to service violation and penalties. In this paper, we test and report the accuracy of time series and machine learning-based prediction approaches. In each category, we test many different techniques and rank them according to their order of accuracy in predicting future QoS. Our analysis helps the cloud service provider to choose an appropriate prediction approach (whether time series or machine learning based) and further to utilize the best method depending on input data patterns to obtain an accurate prediction result and better manage their SLAs to avoid violation penalties.
机译:在云计算中,服务级别协议(SLA)是服务提供商与消费者之间的法律协议,其中包含交易双方都需要履行的义务和承诺列表。从服务提供商的角度来看,违反此类承诺会导致金钱和声誉方面的惩罚,因此必须进行有效管理。在文献中,已经在云服务管理领域研究了这个问题。 SLA形成后管理云服务所需的一方面是预测云参数的未来服务质量(QoS),以确定它们是否导致违规。文献中的各种方法使用不同的预测方法来执行此任务,但是没有一个方法研究每种方法的准确性。但是,这样做很重要,因为每种预测方法的结果都会根据输入数据的模式而变化,并且选择错误的预测算法选择可能会导致服务违规和罚款。在本文中,我们测试并报告了时间序列和基于机器学习的预测方法的准确性。在每种类别中,我们测试许多不同的技术,并根据它们在预测未来QoS中的准确性顺序对其进行排名。我们的分析帮助云服务提供商选择合适的预测方法(基于时间序列或基于机器学习),并进一步根据输入数据模式利用最佳方法来获得准确的预测结果,并更好地管理其SLA以避免违规处罚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号