首页> 外文期刊>Future generation computer systems >Identifying cyber threats to mobile-IoT applications in edge computing paradigm
【24h】

Identifying cyber threats to mobile-IoT applications in edge computing paradigm

机译:在边缘计算范式中识别对移动物联网应用程序的网络威胁

获取原文
获取原文并翻译 | 示例

摘要

The malware has become an increasing problem for Mobile-Internet of Things applications in edge computing platform. Variants of malware can be identified once their general characteristics are known and overtly malicious behavior can be identified. Some research has been performed using static analysis in order to identify privacy violating malware for IoT in edge computing. Dynamic analysis can be easily evaded as malware can adapt to avoid detection and has performance overheads. The case where an application lies about its intention for requesting a permission or intentionally violates the user’s expectation of an applications behavior is not so well researched. This research extensively explores the fundamental gap in the current literature in terms of mobile malware. We particularly focus on a greater set of permissions which may be leveraged for other purposes, for example by using sensors to record user credentials or monitoring a user’s movements. This research will attempt to identify such scenarios by employing behavioral analysis to determine when and how permissions are used and static and dynamic analysis to determine the behavior of application logic yet to execute. We proposed two-layer detection engine with hybrid feature analysis. Experimental results with real mobile malware IoT data show that our proposed approach with permission related features outperforms other detection engines.
机译:恶意软件已成为边缘计算平台中移动物联网应用程序日益严重的问题。一旦知道了恶意软件的一般特征,就可以对其进行识别,并且可以识别明显的恶意行为。为了确定边缘计算中用于IoT的侵犯隐私的恶意软件,已经使用静态分析进行了一些研究。动态分析可以轻松地逃避,因为恶意软件可以适应避免检测并具有性能开销。对于应用程序是否出于其请求许可的意图或有意违反用户对应用程序行为的期望的情况,研究得不够好。这项研究广泛地探讨了当前文献中有关移动恶意软件的根本差距。我们特别关注一组更大的权限,这些权限可用于其他目的,例如,使用传感器记录用户凭据或监视用户的移动。这项研究将尝试通过行为分析来确定何时以及如何使用权限,以及通过静态和动态分析来确定尚未执行的应用程序逻辑的行为,从而识别此类情况。我们提出了具有混合特征分析的两层检测引擎。真实的移动恶意软件IoT数据的实验结果表明,我们提出的具有权限相关功能的方法优于其他检测引擎。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号