首页> 外文期刊>Computers & Security >A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments
【24h】

A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments

机译:一种网络安全框架,用于识别雾计算和物联网环境中的恶意边缘设备

获取原文
获取原文并翻译 | 示例

摘要

Device security is one of the major challenges for successful implementation of Internet of Things and fog computing environment in current IT space. Researchers and Information Technology (IT) organizations have explored many solutions to protect systems from unauthenticated device attacks (known as outside device attacks). Fog computing uses network devices (e.g. router, switch and hub) for latency-aware processing of collected data using IoT. Then, identification of malicious edge device is one of the critical activities in data security of fog computing environment. Preventing attacks from malicious edge devices in fog computing environment is more difficult because they have certain granted privileges to use and process the data. In this paper, proposed cybersecurity framework uses three technologies which are Markov model, Intrusion Detection System (IDS) and Virtual Honeypot Device (VHD) to identify malicious edge device in fog computing environment. A two-stage hidden Markov model is used to effectively categorize edge devices in four different levels. VHD is designed to store and maintain log repository of all identified malicious devices which assists the system to defend itself from any unknown attacks in the future. Proposed cybersecurity framework is tested with real attacks in virtual environment created using OpenStack and Microsoft Azure. Results indicated that proposed cybersecurity framework is successful in identifying the malicious device as well as reducing the false IDS alarm rate.
机译:设备安全性是当前IT空间中成功实施物联网和雾计算环境的主要挑战之一。研究人员和信息技术(IT)组织已经探索了许多解决方案来保护系统免受未经身份验证的设备攻击(称为外部设备攻击)。雾计算使用网络设备(例如路由器,交换机和集线器)通过IoT对收集的数据进行延迟感知处理。因此,对恶意边缘设备的识别是雾计算环境数据安全中的关键活动之一。在雾计算环境中,阻止来自恶意边缘设备的攻击更加困难,因为它们具有使用和处理数据的某些授予的特权。本文提出的网络安全框架使用马尔可夫模型,入侵检测系统(IDS)和虚拟蜜罐设备(VHD)这三种技术来识别雾计算环境中的恶意边缘设备。使用两阶段隐马尔可夫模型将边缘设备有效地分类为四个不同级别。 VHD旨在存储和维护所有已识别恶意设备的日志存储库,以帮助系统将来防御任何未知攻击。拟议的网络安全框架已通过使用OpenStack和Microsoft Azure创建的虚拟环境中的真实攻击进行了测试。结果表明,提出的网络安全框架可以成功识别恶意设备并减少错误的IDS警报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号