首页> 外文期刊>Future generation computer systems >Link based BPSO for feature selection in big data text clustering
【24h】

Link based BPSO for feature selection in big data text clustering

机译:基于链接的BPSO用于大数据文本聚类中的特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is a significant task in data mining and machine learning applications which eliminates irrelevant and redundant features and improves learning performance. This paper proposes a new feature selection method for unsupervised text clustering named link based particle swarm optimization (LBPSO). This method introduces a new neighbour selection strategy in BPSO to select prominent features. The performance of traditional particle swarm optimization(PSO)is limited by using global best updating mechanism for feature selection. Instead of using global best, LBPSO particles are updated based on neighbour best position to enhance the exploitation and exploration capability. These prominent features are then tested usingk-means clustering algorithm to improve the performance and reduce the cost of computational time of the proposed algorithm. The performance of LBPSO are investigated on three published datasets, namely Reuter 21578, TDT2 and Tr11. Our results based on evaluation measures show that the performance of LBPSO is superior than other PSO based algorithms.
机译:特征选择是数据挖掘和机器学习应用程序中的一项重要任务,它消除了不相关和多余的特征并提高了学习性能。本文提出了一种新的无监督文本聚类的特征选择方法,称为基于链接的粒子群优化算法(LBPSO)。该方法在BPSO中引入了一种新的邻居选择策略,以选择突出的特征。传统的粒子群算法(PSO)的性能受到全局最优更新机制的限制。 LBPSO粒子不是使用全局最佳方法,而是根据邻居的最佳位置进行更新,以增强开发和勘探能力。然后使用k均值聚类算法对这些突出特征进行测试,以提高性能并减少所提出算法的计算时间。在三个已公开的数据集,即路透社21578,TDT2和Tr11上研究了LBPSO的性能。我们基于评估指标的结果表明,LBPSO的性能优于其他基于PSO的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号