首页> 外文期刊>Future generation computer systems >Efficiently and securely harnessing cloud to solve linear regression and other matrix operations*
【24h】

Efficiently and securely harnessing cloud to solve linear regression and other matrix operations*

机译:高效安全地利用云解决线性回归和其他矩阵运算*

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn this paper, we study the problem of efficiently outsourcing large-scale linear regression of a customer to the public cloud while preserving the privacy of the customer’s input and output results. To reduce the customer’s computation costs, existing schemes generally use diagonal matrix multiplication to encrypt the input data. While such approaches are efficient, there are potential security limitations. For example, in this paper we reveal previously unknown limitations in the scheme of Chen et al. (2014). We then present a novel method to generate random dense matrices, and a new secure solution for outsourcing linear regression to cloud. In our proposed approach, we perturb the customer’s input/output by adding random numbers and multiplying our constructed random dense matrices. A comparative summary demonstrates that the proposed approach has a stronger level of security, without incurring additional computation complexity. We also demonstrate that our constructed dense matrices can be utilized to efficiently enhance the security of outsourcing scheme for other large-scale matrix operations, including linear equation system and determinant computation.HighlightsWe analyze the security vulnerabilities of existing linear regression (LR) outsourcing scheme.We present a new encryption scheme to securely outsource large-scale LR to an untrusted cloud, in which the input dataset is perturbed by dense matrices with high efficiency.We observe an equivalent condition of LR answer verification, based on which we develop a novel verification algorithm for LR outsourcing.We provide detailed theoretical analysis and extensive simulation experiments to evaluate the new scheme.
机译: 摘要 在本文中,我们研究了将客户的大规模线性回归有效外包给公共云的问题,同时保留了客户输入和输出结果的隐私。为了降低客户的计算成本,现有方案通常使用对角矩阵乘法来加密输入数据。尽管此类方法有效,但存在潜在的安全限制。例如,在本文中,我们揭示了Chen等人方案中以前未知的局限性。 (2014)。然后,我们提出了一种生成随机密集矩阵的新方法,以及将线性回归外包给云的新安全解决方案。在我们提出的方法中,我们通过添加随机数并乘以构造的随机密集矩阵来扰乱客户的输入/输出。比较总结表明,所提出的方法具有更高的安全级别,而不会引起额外的计算复杂性。我们还证明了我们构造的稠密矩阵可以有效地提高外包方案在其他大规模矩阵运算(包括线性方程组和行列式计算)中的安全性。 突出显示 我们分析了现有线性回归(LR)外包方案的安全漏洞。 我们提出了一种新的加密方案,可以安全地外包大规模LR到不受信任的云,其中输入数据集受到干扰 我们观察到LR答案验证的等效条件,在此基础上我们开发了一种新颖的LR外包验证算法。 我们提供详细的理论分析和广泛的仿真实验,以评估新方案。

著录项

  • 来源
    《Future generation computer systems》 |2018年第4期|404-413|共10页
  • 作者单位

    College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,Division of Computer Science, University of Aizu;

    College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,Collaborative Innovation Center of Novel Software Technology and Industrialization;

    Department of Information Systems and Cyber Security and Department of Electrical and Computer Engineering , The University of Texas at San Antonio;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Secure outsourcing; Linear regression; Verification; Data perturbation;

    机译:云计算;安全外包;线性回归;验证;数据扰动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号