首页> 外文期刊>Fundamenta Informaticae >An Algorithm using Context Reduction for Efficient Incremental Generation of Concept Set
【24h】

An Algorithm using Context Reduction for Efficient Incremental Generation of Concept Set

机译:一种使用上下文降低概念集的算法

获取原文
获取原文并翻译 | 示例

摘要

The theory of Formal Concept Analysis (FCA) provides efficient methods for conceptualization of formal contexts. The methods of FCA are applied mainly on the field of knowledge engineering and data mining The key element in FCA applications is the generation of a concept set. The main goal of this research work is to develop an efficient incremental method for the construction of concept sets. The incremental construction method is used for problems where context may change dynamically. The paper first proposes a novel incremental concept set construction algorithm called ALINC, where the insertion loop runs over the attribute set. The combination of object-level context processing and ALINC is an object level incremental algorithm (OALINC) where the context is built up object by object. Based on the performed tests, OALINC dominates the other popular batch or incremental methods for sparse contexts. For dense contexts, the OINCLOSE method, which uses the InClose algorithm for processing of reduced contexts, provides a superior efficiency. Regarding the OALINC/OINCLOSE algorithms, our test results with uniform distribution and real data sets show that our method provides very good performance in the full investigated parameter range. Especially good results are experienced for symmetric contexts in the case of word clustering using context-based similarity.
机译:正式概念分析理论(FCA)为正式背景的概念化提供了有效的方法。 FCA的方法主要用于知识工程领域,数据挖掘FCA应用中的关键元素是概念集的生成。本研究工作的主要目标是为概念集的构建开发一种有效的增量方法。增量施工方法用于上下文可能动态改变的问题。本文首先提出了一种名为ALINC的新型增量概念集结构算法,其中插入循环在属性集上运行。对象级上下文处理和ALINC的组合是对象级增量算法(OALINC),其中通过对象构建了上下文。根据执行的测试,OAlins占据了其他流行的批量或增量方法,用于稀疏上下文。对于致密的上下文,使用围页算法来处理减少上下文的Oinclose方法提供了卓越的效率。关于OALINC / OINCLOSE算法,我们的测试结果具有均匀分布和实际数据集,表明我们的方法在完整调查的参数范围内提供了非常好的性能。在使用基于上下文的相似性的单词聚类的情况下,对对称上下文遇到特别好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号