首页> 外文期刊>Fundamenta Informaticae >An Algorithm using Context Reduction for Efficient Incremental Generation of Concept Set
【24h】

An Algorithm using Context Reduction for Efficient Incremental Generation of Concept Set

机译:使用上下文约简的有效增量概念集生成算法

获取原文
获取原文并翻译 | 示例

摘要

The theory of Formal Concept Analysis (FCA) provides efficient methods for conceptualization of formal contexts. The methods of FCA are applied mainly on the field of knowledge engineering and data mining The key element in FCA applications is the generation of a concept set. The main goal of this research work is to develop an efficient incremental method for the construction of concept sets. The incremental construction method is used for problems where context may change dynamically. The paper first proposes a novel incremental concept set construction algorithm called ALINC, where the insertion loop runs over the attribute set. The combination of object-level context processing and ALINC is an object level incremental algorithm (OALINC) where the context is built up object by object. Based on the performed tests, OALINC dominates the other popular batch or incremental methods for sparse contexts. For dense contexts, the OINCLOSE method, which uses the InClose algorithm for processing of reduced contexts, provides a superior efficiency. Regarding the OALINC/OINCLOSE algorithms, our test results with uniform distribution and real data sets show that our method provides very good performance in the full investigated parameter range. Especially good results are experienced for symmetric contexts in the case of word clustering using context-based similarity.
机译:形式概念分析(FCA)的理论为形式上下文的概念化提供了有效的方法。 FCA方法主要应用于知识工程和数据挖掘领域。FCA应用程序中的关键要素是概念集的生成。这项研究工作的主要目标是开发一种有效的增量方法来构建概念集。增量构造方法用于上下文可能会动态变化的问题。本文首先提出了一种新颖的增量概念集构造算法,称为ALINC,其中插入循环遍历属性集。对象级上下文处理和ALINC的组合是一种对象级增量算法(OALINC),其中上下文是逐个对象建立的。根据执行的测试,对于稀疏上下文,OALINC主导了其他流行的批处理或增量方法。对于密集上下文,使用InClose算法处理简化上下文的OINCLOSE方法可提供出色的效率。关于OALINC / OINCLOSE算法,我们的测试结果具有均匀的分布和真实的数据集,这表明我们的方法在整个研究的参数范围内都具有非常好的性能。在使用基于上下文的相似性进行单词聚类的情况下,对称上下文的效果特别好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号