首页> 外文期刊>Fundamenta Informaticae >Tight Lower Bounds on the Resolution Complexity of Perfect Matching Principles
【24h】

Tight Lower Bounds on the Resolution Complexity of Perfect Matching Principles

机译:完美匹配原理的分辨率复杂性的下界

获取原文
获取原文并翻译 | 示例

摘要

The resolution complexity of the perfect matching principle was studied by Razborov [1], who developed a technique for proving its lower bounds for dense graphs. We construct a constant degree bipartite graph G(n) such that the resolution complexity of the perfect matching principle for G(n) is 2(Omega(n)) where n is the number of vertices in G(n). This lower bound is tight up to some polynomial. Our result implies the 2(Omega(n)) lower bounds for the complete graph K2n+1 and the complete bipartite graph K-n,K- O(n) that improves the lower bounds following from [1]. We show that for every graph G with n vertices that has no perfect matching there exists a resolution refutation of perfect matching principle for G of size O (n(2)2(n)). Thus our lower bounds match upper bounds up to a multiplicative constant in the exponent. Our results also imply the well-known exponential lower bounds on the resolution complexity of the pigeonhole principle, the functional pigeonhole principle and the pigeonhole principle over a graph.
机译:完美匹配原理的分辨率复杂度由Razborov [1]研究,他开发了一种证明密集图的下界的技术。我们构造一个恒定度的二部图G(n),使得G(n)的完美匹配原理的分辨率复杂度为2(Omega(n)),其中n是G(n)中的顶点数。这个下限严格到一个多项式。我们的结果意味着完整图K2n + 1和完整二部图K-n,K-O(n)的2(Omega(n))下界提高了[1]的下界。我们显示出,对于每个具有n个顶点的G且没有完美匹配的图形,存在大小为O(n(2)2(n))的G完美匹配原理的分辨率反驳。因此,我们的下限将上限匹配到指数中的乘法常数。我们的结果还暗示了图中的鸽孔原理,功能鸽孔原理和鸽孔原理的分辨率复杂度的众所周知的指数下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号