...
首页> 外文期刊>Fuel >FCC coprocessing oil sands heavy gas oil and canola oil. 1. Yield structure
【24h】

FCC coprocessing oil sands heavy gas oil and canola oil. 1. Yield structure

机译:FCC协同处理油可将重质瓦斯油和低芥酸菜籽油打磨。 1.收益结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reducing the carbon footprint or GHG emissions is a major challenge during the production and processing of Canadian oil sands bitumen for clean transportation fuels. Co-processing bitumen derived feeds and biomass may provide an alternative solution since the level of GHG emissions for producing renewable biofuels is considered significantly lower than that for fossil fuels. In many developed countries, it is required that biofuels replace from 6% to 10% of petroleum fuels in the near future. Co-processing biomass and bitumen feeds can use existing refining infrastructure and technologies, saving capital and operating costs. In addition, co-processing may generate synergies that improve gasoline and diesel qualities. The current study investigates the catalytic cracking performances of pure heavy gas oil (HGO) derived from oil sands synthetic crude and a mixture of 15 v% canola oil in HGO using a commercial equilibrium catalyst under typical FCC conditions. Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation (ACE) unit at fixed weight hourly space velocity (WHSV) of 8 h(-1), 490-530 degrees C, and catalyst/oil ratios of 4-12 g/g. Higher conversion, dry gas yield, and liquefied petroleum gas (LPG) yield were observed at a given catalyst/oil ratio when cracking the HGO/canola oil blend compared with pure HGO. The increase in dry gas yield can be attributed to the decarboxylation and decarbonylation reactions in the presence of triglycerides composed of fatty acids in the feed, leading to the formation of CO2 and CO. In general, at a given conversion, the addition of canola oil resulted in lower gasoline yield at the expense of water formation. As well, lower coke yield was observed for the blend. The relatively high nitrogen content in the feeds played an important role in catalyst activity and selectivity, particularly at low reaction temperatures. (C) 2015 Crown Copyright and ELSEVIER Ltd. Published by Elsevier Ltd. All rights reserved.
机译:在生产和加工用于清洁运输燃料的加拿大油砂沥青的过程中,减少碳足迹或温室气体排放是一项重大挑战。共同处理沥青衍生的饲料和生物质可能提供替代解决方案,因为生产可再生生物燃料的温室气体排放水平被认为大大低于化石燃料。在许多发达国家,要求在不久的将来生物燃料替代石油燃料的6%至10%。共处理生物质和沥青饲料可以使用现有的精炼基础设施和技术,从而节省资金和运营成本。此外,协同处理可以产生协同作用,从而提高汽油和柴油的质量。目前的研究使用典型的FCC条件,使用商业平衡催化剂研究了油砂合成原油和15v%菜籽油在HGO中的混合物所产生的纯重瓦斯油(HGO)的催化裂化性能。使用台式规模化高级裂化评估(ACE)装置以8 h(-1),490-530摄氏度的固定重量小时空速(WHSV)和4-12 g / g的催化剂/油比进行裂化实验G。与纯HGO相比,在裂解HGO /低芥酸菜子油混合物时,在给定的催化剂/油比下,观察到较高的转化率,干气产率和液化石油气(LPG)产率。干气产量的增加可归因于进料中存在由脂肪酸组成的甘油三酸酯时发生的脱羧和脱羰反应,导致形成CO2和CO。通常,在给定的转化率下,添加低芥酸菜子油导致汽油收率降低,但会形成水。同样,对于掺合物观察到较低的焦炭收率。进料中较高的氮含量在催化剂活性和选择性中起重要作用,特别是在低反应温度下。 (C)2015 Crown版权所有,并由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号