...
首页> 外文期刊>Fuel >Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: A critical review
【24h】

Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: A critical review

机译:导电材料的优势在interspecies电子转移无关的acetoclastic methanoisesis:临界评论

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fossil-fuel overuse and global warming are calling for new techniques to provide sustainable fuels. Biomethane can be produced by anaerobic digestion of organic waste, yet microbial mechanisms involved are still debated. Traditionally, reduction of carbon dioxide (CO2) to methane (CH4) is commonly explained by interspecies electron transfer, i. e., direct interspecies electron transfer (DIET)-based CO2 reduction or mediated interspecies electron transfer (MIET)-based CO2 reduction. For DIET-based CO2 reduction, or DIET-CO2 reduction, where electrons are provided by electricigens and transferred to methanogenic archaea to complete CO2 reduction for methane production. Methanogenesis is also executed and facilitated by acetoclastic methanogenesis in the presence of conductive materials, as evidenced recently. Here we compare DIET-CO2 reduction and acetoclastic methanogenesis mediated by conductive materials. In the past decade, DIET-CO2 reduction is considered as the backbone for methane production strategy in anaerobic engineering digestion. But increasing evidences propose the importance of acetoclastic methanogenesis strengthened by exogenous media. DIET-based CO2 reduction has been extensively reviewed. Herein, we conclude the diverse microbial mechanisms affected by conductive materials to improve potential acetoclastic methanogenesis for the first time. Increasing electron transfer in methanogenic archaea and/or between bacteria and methanogens, microbial immobilization, pH buffering capacity, providing metal ions, reducing toxicity, regulation of oxidation-reduction potential are detailed reviewed. Possible future application based on acetotrophic methanogens is suggested via conductive materials in anaerobic digestion and natural ecological environment management.
机译:化石燃料过度使用和全球变暖正在呼吁提供可持续燃料的新技术。生物甲烷可以通过厌氧消化的有机废物产生,但涉及的微生物机制仍然讨论。传统上,通常通过三种电子转移来解释二氧化碳(CO2)的二氧化碳(CO 2)的还原。即,直接间隙电子转移(饮食)基于CO2还原或介导的Interpecies电子转移(MIET)的CO 2减少。对于基于饮食的二氧化碳,或减少饮食 - 二氧化碳,其中电子通过电解提供并转移到甲烷型古亚替氏植物中以完成甲烷生产的CO 2。通过在导电材料存在下,通过乙酰骨质甲烷化也被执行和促进了甲烷,如最近证明的那样。在这里,我们比较由导电材料介导的饮食 - 二氧化碳还原和乙内腔内甲烷化。在过去的十年中,饮食-CO2还原被认为是厌氧工程消化中甲烷生产策略的骨干。但增加证据提出了外源介质增强的乙酰骨质甲烷的重要性。基于饮食的二氧化碳减少已被广泛审查。在此,我们得出由导电材料影响的不同微生物机制,首次提高潜在的乙酰骨质甲烷。将电子转移增加在甲状腺原煤中和/或细菌和甲酸之间,微生物固定化,pH缓冲能力,提供金属离子,降低毒性,调节氧化还原潜力的调节。通过厌氧消化和自然生态环境管理中的导电材料提出了基于血管缺乏甲烷的可能的未来应用。

著录项

  • 来源
    《Fuel》 |2021年第1期|121577.1-121577.13|共13页
  • 作者单位

    Chinese Acad Sci Yantai Inst Coastal Zone Res Key Lab Coastal Biol & Biol Resources Utilizat Yantai 264003 Peoples R China|Chinese Acad Sci Yantai Inst Coastal Zone Res Key Lab Coastal Environm Proc & Ecol Remedia CAS Yantai 264003 Peoples R China;

    Aix Marseille Univ CNRS IRD INRA Coll France CEREGE Ave Louis Philibert F-13100 Aix En Provence France|Xi An Jiao Tong Univ State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Sri Sivasubramaniya Nadar Coll Engn Dept Chem Engn Chennai 603110 Tamil Nadu India|Sri Sivasubramaniya Nadar Coll Engn Ctr Excellence Water Res CEWAR Chennai 603110 Tamil Nadu India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anaerobic digestion; Methane; Biochar; Activated carbon; Magnetite; Direct interspecies electron transfer;

    机译:厌氧消化;甲烷;生物炭;活性炭;磁铁矿;直接三个电子转移;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号