首页> 外文学位 >Electrically conductive and thermally conductive materials for electronic packaging.
【24h】

Electrically conductive and thermally conductive materials for electronic packaging.

机译:用于电子包装的导电和导热材料。

获取原文
获取原文并翻译 | 示例

摘要

The aim of this dissertation is to develop electrically or thermally conductive materials that are needed for electronic packaging and microelectronic cooling. These materials are in the form of coatings and are made from pastes. The research work encompasses paste formulation, studying the process of converting a paste to a conductive material, relating the processing conditions to the structure and performance, and evaluating performance attributes that are relevant to the application of these conductive materials. The research has resulted in new information that is valuable to the microelectronic industry.; Work on electrically conductive materials emphasizes the development of electrical interconnection materials in the form of air-firable glass-free silver-based electrically conductive thick films, which use the Ti-Al alloy as the binder and are in contrast to conventional films that use glass as the binder. The air-firability, as enabled by minor additions of tin and zinc to the paste, is in contrast to previous glass-free films that are not firable. The recommended firing condition is 930°C in air. The organic vehicle in the paste comprises ethyl cellulose, which undergoes thermal decomposition during burnout of the paste. The ethyl cellulose is dissolved in ether, which facilitates the burnout. Excessive ethyl cellulose hinders the burnout. A higher heating rate results in more residue after burnout. The presence of silver particles facilitates drying and burnout. Firing in air gives lower resistivity than firing in oxygen. Firing in argon gives poor films. Compared to conventional films that use glass as the binder, these films, when appropriately fired, exhibit lower electrical resistivity (2.5 x 10-6 O.cm) and higher scratch resistance.; Work on thermally conductive materials addresses thermal interface materials, which are materials placed at the interface between a heat sink and a heat source for the purpose of improving the thermal contact. Heat dissipation is the most critical problem in the microelectronic industry. This work emphasizes the development of thermal interface materials in the form of phase change materials, namely paraffin wax, which melts at 48°C. The addition of boron nitride particles to the wax improves the performance, as indicated by the thermal contact conductance between copper surfaces. The melting of the wax improves the conformability of the thermal interface material, thereby enhancing the conductance. Pressure applied in the direction perpendicular to the plane of the interface also enhances the conductance. With 15 wt. % BN and a pressure of 0.3 MPa, a thermal contact conductance comparable to that attained by using solder (applied in the molten state) as the thermal interface material has been attained.
机译:本文的目的是开发电子封装和微电子冷却所需的导电或导热材料。这些材料为涂层形式,由糊剂制成。研究工作包括糊剂配方,研究将糊剂转变为导电材料的过程,将加工条件与结构和性能相关联以及评估与这些导电材料的应用相关的性能属性。该研究产生了对微电子产业有价值的新信息。导电材料方面的工作强调以空气可通气的无玻璃银基导电厚膜形式开发电互连材料,该膜使用Ti-Al合金作为粘合剂,与使用玻璃的传统膜形成对比作为粘合剂。通过向糊中少量添加锡和锌而实现的空气可燃性与之前不可烘烤的无玻璃薄膜形成了鲜明的对比。推荐的燃烧条件是在空气中930°C。糊剂中的有机载体包含乙基纤维素,乙基纤维素在糊剂的烧尽期间经历热分解。乙基纤维素溶解在乙醚中,有助于燃尽。过量的乙基纤维素会阻碍倦怠。较高的加热速率导致烧尽后残留物更多。银颗粒的存在有助于干燥和燃尽。在空气中燃烧比在氧气中燃烧产生的电阻率低。用氩气点火会产生较差的薄膜。与使用玻璃作为粘合剂的常规薄膜相比,这些薄膜在适当烧制后具有较低的电阻率(2.5 x 10-6 O.cm)和较高的耐划伤性。导热材料方面的工作涉及热界面材料,热界面材料是放置在散热器和热源之间的界面上的材料,目的是改善热接触。散热是微电子工业中最关键的问题。这项工作着重于以相变材料的形式开发热界面材料,即在48°C熔化的石蜡。如铜表面之间的热接触电导率所示,向蜡中添加氮化硼颗粒可改善性能。蜡的熔化改善了热界面材料的顺应性,从而提高了电导率。在垂直于界面平面的方向上施加的压力也会增强电导率。含15 wt。 BN%和0.3MPa的压力下,已经获得了与通过使用焊料(以熔融状态施加)作为热界面材料所获得的可比的热接触传导率。

著录项

  • 作者

    Liu, Zongrong.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.; Engineering Packaging.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;包装工程;
  • 关键词

  • 入库时间 2022-08-17 11:41:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号