首页> 外文期刊>Fuel >Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2: Understanding the underlying mechanisms by means of optical diagnostics
【24h】

Experimental investigation of pilot-fuel combustion in dual-fuel engines, Part 2: Understanding the underlying mechanisms by means of optical diagnostics

机译:双燃料发动机引燃燃烧的实验研究,第2部分:通过光学诊断了解潜在的机理

获取原文
获取原文并翻译 | 示例

摘要

The pilot-fuel auto-ignition and combustion under engine-like conditions in compressed methane/air mixtures are investigated in a RCEM using a single-hole coaxial injector. In Part 1, the phenomenology of the pilot-fuel combustion was studied based on the thermodynamic analysis. With the addition of methane, a prolonged pilot-fuel combustion duration was observed, especially at increased EGR rates. The aim of Part 2 is to improve the understanding of the underlying processes governing the pilot-fuel burning and premixed flame initiation in dual-fuel engines. The thermodynamic analysis is supplemented by optical diagnostics including the high-speed CH2O-PLIF, Schlieren and OH*, and corroborated with homogeneous reactor and laminar flame speed calculations. The investigations focus on determining the role of (a) ignition location and number of ignition kernels, (b) stratification of the autoignition time due to the methane chemistry effects, and (c) the role of flame propagation during the pilot-fuel burning. In the initial phase, combustion is found to propagate through an autoigniting front. When combustion reaches the lean zones with a high spatial stratification of the autoignition time, premixed flame propagation becomes the dominant mechanism, owing to its higher spreading rate. Both processes influence the pilot-fuel combustion duration. At higher methane concentration, the simulations predict an increasing stratification of the ignition delay in lean regions, while the laminar flame speed in the pilot-fuel lean regions moderately increases. Overall, this explains the observed trend of longer pilot-fuel combustion duration in the dual-fuel cases and indicates an increasing role of flame-propagation in the dual-fuel combustion pilot-fuel burning.
机译:在RCEM中,使用单孔同轴喷油器研究了压缩甲烷/空气混合物中类似发动机工况下的引燃燃料自动点火和燃烧。在第1部分中,基于热力学分析研究了引燃燃料的燃烧现象。随着甲烷的加入,观察到引燃燃料燃烧时间延长,特别是在EGR率增加的情况下。第2部分的目的是增进对控制双燃料发动机中的引燃燃料和预混合火焰引发的基本过程的理解。热力学分析还辅以光学诊断程序,包括高速CH2O-PLIF,Schlieren和OH *,并通过均相反应堆和层流火焰速度计算得到证实。研究集中在确定以下方面的作用:(a)点火位置和点火核的数量,(b)由于甲烷化学作用而导致的自燃时间分层,以及(c)引燃燃料燃烧期间火焰传播的作用。在初始阶段,发现燃烧通过自燃前沿传播。当燃烧到达自燃时间的高度空间分层的稀薄区域时,由于其较高的扩散速率,预混火焰的传播成为主要机制。这两个过程都会影响引燃燃料的燃烧持续时间。在较高的甲烷浓度下,模拟预测稀薄区域点火延迟的分层会增加,而引燃燃料稀薄区域的层流火焰速度会适度增加。总的来说,这解释了在双燃料情况下观察到的引燃燃料燃烧持续时间更长的趋势,并表明火焰传播在双燃料燃烧引燃燃料燃烧中的作用越来越大。

著录项

  • 来源
    《Fuel》 |2019年第1期|115766.1-115766.14|共14页
  • 作者单位

    Paul Scherrer Inst, Energy & Environm Div, Forsch Str 111, CH-5232 Villigen, Switzerland;

    Paul Scherrer Inst, Energy & Environm Div, Forsch Str 111, CH-5232 Villigen, Switzerland;

    Swiss Fed Inst Technol, Inst Energy Technol, Lab Aerothermochem & Combust Syst, Sonneggstr 3, CH-8092 Zurich, Switzerland;

    Swiss Fed Inst Technol, Inst Energy Technol, Lab Aerothermochem & Combust Syst, Sonneggstr 3, CH-8092 Zurich, Switzerland|Combust & Flow Solut GmbH, Zurich, Switzerland;

    Univ Appl Sci & Arts Northwestern Switzerland, Inst Thermal & Fluid Engn, Sch Engn, Klosterzelgstr 2, CH-5210 Windisch, Switzerland;

    Swiss Fed Inst Technol, Inst Energy Technol, Lab Aerothermochem & Combust Syst, Sonneggstr 3, CH-8092 Zurich, Switzerland;

    IFP Energies Nouvelles, Inst Carnot IFPEN Transports Energie, 1 & 4 Ave Bois Preau, F-92852 Rueil Malmaison, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dual-fuel combustion; Natural-gas engines; Combustion mode transition; Autoignition; High-speed CH2O-PLIF; Optical diagnostics;

    机译:双燃料燃烧;天然气发动机;燃烧模式过渡;自燃;高速CH2O-PLIF;光学诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号