首页> 外文期刊>Frontiers of computer science in China >Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine
【24h】

Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine

机译:使用在线多核极限学习机促进机器人感官特征的增量融合

获取原文
获取原文并翻译 | 示例

摘要

Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features.
机译:机器人识别任务通常需要多个同质或异质传感器,这些传感器本质上会生成具有各种噪声污染的顺序,冗余和存储需求数据。因此,执行高效感官特征融合的在线机器学习算法已成为机器人识别领域的热门话题。本文提出了一种在线多核极限学习机(OM-ELM),该机可组装多个ELM分类器并使用p-范数表示多核学习(MKL)问题来优化核权重。它可用于需要在多个顺序感官读数上进行增量学习的特征融合应用中。 OM-ELM的性能已针对四种不同的机器人识别任务进行了测试。通过与几种用于多核学习的最新在线模型进行比较,我们声称我们的方法以更少的训练时间实现了更高或相当的训练精度和泛化能力。还提出了实用建议,以帮助有效地在线融合机器人的感官特征。

著录项

  • 来源
    《Frontiers of computer science in China》 |2017年第2期|276-289|共14页
  • 作者单位

    State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China ,Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China ,Department of Computing and Information Systems, The University of Melbourne, Parkville 3010 VIC, Australia;

    State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China ,Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China ,Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China ,Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    multi-kernel learning; online learning; extreme learning machine; feature fusion; robot recognition;

    机译:多核学习;在线学习;极限学习机;特征融合机器人识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号