首页> 外文期刊>Foundations of computing and decision sciences >INTERVAL VERSIONS OF CENTRAL-DIFFERENCE METHOD FOR SOLVING THE POISSON EQUATION IN PROPER AND DIRECTED INTERVAL ARITHMETIC
【24h】

INTERVAL VERSIONS OF CENTRAL-DIFFERENCE METHOD FOR SOLVING THE POISSON EQUATION IN PROPER AND DIRECTED INTERVAL ARITHMETIC

机译:正确和直接的区间算术中解泊松方程的中心差分方法的区间版本

获取原文
获取原文并翻译 | 示例

摘要

To study the Poisson equation, the central-difference method is often used. This method has the local truncation error of order O(h~2 + k~2), where h and k are mesh constants. Using this method in conventional floating-point arithmetic, we get solutions including the method, representation and rounding errors. Therefore, we propose interval versions of the central-difference method in proper and directed interval arithmetic. Applying such methods in floating-point interval arithmetic allows one to obtain solutions including all possible numerical errors. We present numerical examples from which it follows that the presented interval method in directed interval arithmetic is a little bit better than the one in proper interval arithmetic, i.e. the intervals of solutions are smaller. It appears that applying both proper and directed interval arithmetic the exact solutions belong to the interval solutions obtained.
机译:为了研究泊松方程,通常使用中心差法。该方法的局部截断误差为O(h〜2 + k〜2)阶,其中h和k是网格常数。在常规浮点算法中使用该方法,我们得到的解决方案包括方法,表示和舍入误差。因此,我们在适当的有向间隔算法中提出了中心差方法的间隔版本。在浮点间隔算术中应用这种方法可以使人们获得包括所有可能的数值误差在内的解。我们提供了一些数值示例,从中可以得出,定向间隔算法中提出的间隔方法比适当间隔算法中的间隔方法要好一些,即解的间隔较小。似乎同时应用适当的和有向的区间算术,精确解属于获得的区间解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号