首页> 外文期刊>Foundations of computing and decision sciences >A Statistical Evaluation of The Depth of Inheritance Tree Metric for Open-Source Applications Developed in Java
【24h】

A Statistical Evaluation of The Depth of Inheritance Tree Metric for Open-Source Applications Developed in Java

机译:在Java中开发的开源应用程序的遗产树度量初探的统计评估

获取原文
获取原文并翻译 | 示例

摘要

The Depth of Inheritance Tree (DIT) metric, along with other ones, is used for estimating some quality indicators of software systems, including open-source applications (apps). In cases involving multiple inheritances, at a class level, the DIT metric is the maximum length from the node to the root of the tree. At an application (app) level, this metric defines the corresponding average length per class. It is known, at a class level, a DIT value between 2 and 5 is good. At an app level, similar recommended values for the DIT metric are not known. To find the recommended values for the DIT mean of an app we have proposed to use the confidence and prediction intervals. A DIT mean value of an app from the confidence interval is good since this interval indicates how reliable the estimate is for the DIT mean values of all apps used for estimating the interval. A DIT mean value higher than an upper bound of prediction interval may indicate that some classes have a large number of the inheritance levels from the object hierarchy top. What constitutes greater app design complexity as more classes are involved. We have estimated the confidence and prediction intervals of the DIT mean using normalizing transformations for the data sample from 101 open-source apps developed in Java hosted on GitHub for the 0.05 significance level.
机译:继承树(DIT)度量以及其他元标准的深度用于估计软件系统的一些质量指标,包括开源应用程序(应用程序)。在涉及多个继承的情况下,在一个类级别,DIT度量标准是从节点到树根的最大长度。在应用程序(应用程序)级别,此度量标准定义每个类的相应平均长度。众所周知,在一个类别,2和5之间的点值是好的。在APP级别,不知道DIT度量的类似推荐值。找到我们建议使用置信度和预测间隔的应用程序的推荐值。从置信区间的APP的DIT平均值良好,因为该间隔表示估计是如何可靠的,用于估计间隔的所有应用的DIT平均值。高于预测间隔的上限的点平均值可以指示一些类具有来自对象层次的大量继承级别。随着更多课程涉及更多课程,构成更大的应用程序设计复杂性。我们估计了DIT平均值的置信度和预测间隔,使用来自在Github上的Java中开发的101个开源应用程序的数据示例的正常化转换进行了0.05显着性水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号