首页> 外文期刊>Formal Aspects of Computing >Counterexample-guided inductive synthesis for probabilistic systems
【24h】

Counterexample-guided inductive synthesis for probabilistic systems

机译:概率系统的反例引导诱导合成

获取原文
获取原文并翻译 | 示例

摘要

This paper presents counterexample-guided inductive synthesis (CEGIS) to automatically synthesise probabilistic models. The starting point is a family of finite-stateMarkov chains with related but distinct topologies. Such families can succinctly be described by a sketch of a probabilistic program. Program sketches are programs containing holes. Every hole has a finite repertoire of possible program snippets by which it can be filled.We study several synthesis problems-feasibility, optimal synthesis, and complete partitioning-for a given quantitative specification phi. Feasibility amounts to determine a family member satisfying., optimal synthesis amounts to find a family member that maximises the probability to satisfy., and complete partitioning splits the family in satisfying and refuting members. Each of these problems can be considered under the additional constraint of minimising the total cost of instantiations, e.g., what are all possible instantiations for phi that are within a certain budget? The synthesis problems are tackled using a CEGIS approach. The crux is to aggressively prune the search space by using counterexamples provided by a probabilistic model checker. Counterexamples can be viewed as sub-Markov chains that rule out all family members that share this sub-chain. Our CEGIS approach leverages efficient probabilistic model checking, modernSMTsolving, and programsnippets as counterexamples. Experiments on case studies froma diverse nature-controller synthesis, program sketching, and security-show that synthesis among up to a million candidate designs can be done using a few thousand verification queries.
机译:本文介绍了对抗的诱导合成(CEGIS),以自动综合概率模型。起点是一个有限的Statemarkov链条,具有相关但不同的拓扑。这些家庭可以简洁地描述概率计划的草图。程序草图是包含孔的程序。每个孔都有有限的reptoIre,可以填充它可以填充的节目片段。我们研究了几种合成问题 - 可行性,最佳合成和完全分区 - 对于给定的定量规范phi。确定令人满意的家庭成员的可行性金额。最佳合成量,以查找最大化满足概率的家庭成员,并完成分区的令人满意和反驳成员。在最小化实例化总成本的额外约束下,可以考虑这些问题中的每一个,例如,在某个预算中的PHI中所有可能的实例化的内容是什么?使用CEGIS方法解决了合成问题。 CRUX是通过使用概率模型检查器提供的反例来激发搜索空间。 ConsterEnexamples可以被视为Sub-Markov链,从排除所有共享此子链的家庭成员。我们的CEGIS方法利用有效的概率模型检查,现代的概率和Prograrynippets作为反例。关于不同自然控制器综合,节目草图和安全性的案例研究的实验,表明可以使用几千次验证查询来完成多达一百万候选设计的合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号