首页> 外文期刊>Formal Aspects of Computing >Verification of piecewise deep neural networks: a star set approach with zonotope pre-filter
【24h】

Verification of piecewise deep neural networks: a star set approach with zonotope pre-filter

机译:分段深神经网络的验证:具有Zonotope预过滤器的星形套装方法

获取原文
获取原文并翻译 | 示例

摘要

Verification has emerged as a means to provide formal guarantees on learning-based systems incorporating neural network before using them in safety-critical applications. This paper proposes a new verification approach for deep neural networks (DNNs) with piecewise linear activation functions using reachability analysis. The core of our approach is a collection of reachability algorithms using star sets (or shortly, stars), an effective symbolic representation of high-dimensional polytopes. The star-based reachability algorithms compute the output reachable sets of a network with a given input set before using them for verification. For a neural network with piecewise linear activation functions, our approach can construct both exact and over-approximate reachable sets of the neural network. To enhance the scalability of our approach, a star set is equipped with an outer-zonotope (a zonotope over-approximation of the star set) to quickly estimate the lower and upper bounds of an input set at a specific neuron to determine if splitting occurs at that neuron. This zonotope pre-filtering step reduces significantly the number of linear programming optimization problems that must be solved in the analysis, and leads to a reduction in computation time, which enhances the scalability of the star set approach. Our reachability algorithms are implemented in a software prototype called the neural network verification tool, and can be applied to problems analyzing the robustness of machine learning methods, such as safety and robustness verification of DNNs. Our experiments show that our approach can achieve runtimes twenty to 1400 times faster than Reluplex, a satisfiability modulo theory-based approach. Our star set approach is also less conservative than other recent zonotope and abstract domain approaches.
机译:验证已成为提供正式保障在安全关键应用中的基于学习的系统中提供正式保障的手段。本文提出了一种新的神经网络(DNN)的新验证方法,使用可达性分析具有分段线性激活功能。我们的方法的核心是使用星套(或不久,星星)的可达性算法的集合,其有效的高维多台的象征性。在使用之前,基于星的可达性算法使用给定的输入集来计算网络的输出到达集合。对于具有分段线性激活功能的神经网络,我们的方法可以构造精确和过近似的神经网络的可到达组。为了提高我们方法的可扩展性,星形集配备有外Zonotope(星形集的Zonotope过度逼近),以快速估计特定神经元在特定神经元处的输入和上限以确定分裂是否发生在那个神经元。该Zonotope预过滤步骤可显着降低了在分析中必须解决的线性编程优化问题的数量,并导致计算时间的降低,这提高了星形框方法的可扩展性。我们的可达性算法是在称为神经网络验证工具的软件原型中实现的,并且可以应用于分析机器学习方法的稳健性的问题,例如DNN的安全性和鲁棒性验证。我们的实验表明,我们的方法可以比加密,这是一种基于模数理论的方法更快地实现了二十到14​​00倍的运行时间。我们的星形套装方法也较少保守,而不是最近的Zonotope和抽象领域方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号