首页> 外文期刊>Food research international >Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles
【24h】

Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles

机译:使用双通道微流化技术通过反溶剂沉淀法连续生产核-壳蛋白纳米颗粒:酪蛋白包被的玉米醇溶蛋白纳米颗粒

获取原文
获取原文并翻译 | 示例
       

摘要

Antisolvent precipitation is commonly used to fabricate protein nanopartides using a simple batch method that involves injecting a protein-solvent mixture into an antisolvent In this study, the potential of producing core-shell protein nanoparticles by antisolvent precipitation using a continuous dual-channel microfluidization method was investigated. The solvent phase (zein in ethanol) and antisolvent phase (casein in water) were made to impinge on each other at high velocity, which generates intense shear, turbulent, and cavitation forces that ensure thorough mixing and breakup of the phases. Relatively small core-shell protein nanoparticles (d < 125 nm) could be produced using this method when the conditions were optimized. The mean particle diameter decreased with increasing antisolvent-to-solvent ratio, increasing homogenization pressure, increasing ethanol content in the solvent phase, and decreasing zein content in the solvent phase. Depending on the processing conditions employed, zein particles in the range of about 120 nm to over 1000 nm could be produced. The operating conditions were further optimized to increase the final zein concentration and decrease the organic solvent content while still obtaining small particles. The surface potential of the core-shell protein nanopartides went from positiVe at low pH to negative at high pH, with a point of zero charge around pH 5. Electron microscopy indicated that the protein particles formed had a roughly spherical shape. The results suggest that the dual-channel microfluidizer could be used to continuously form protein nanoparticles by antisolvent precipitation. Nevertheless, when the microfluidization method was compared with the simple batch method the size of the particles produced under similar conditions were fairly similar. (C) 2016 Elsevier Ltd. All rights reserved.
机译:反溶剂沉淀法通常用于通过简单的分批方法制造蛋白质纳米粒子,该方法涉及将蛋白质-溶剂混合物注入反溶剂中。在这项研究中,使用连续双通道微流化方法通过反溶剂沉淀法生产核-壳蛋白纳米颗粒的潜力是调查。使溶剂相(玉米醇溶蛋白在乙醇中)和抗溶剂相(酪蛋白在水中)在高速下相互碰撞,这会产生强烈的剪切力,湍流和空化力,从而确保各相的彻底混合和分解。当条件优化时,可以使用这种方法生产相对较小的核-壳蛋白纳米颗粒(d <125 nm)。平均粒径随抗溶剂与溶剂比率的增加,均质压力的增加,溶剂相中乙醇含量的增加以及溶剂相中玉米醇溶蛋白含量的降低而降低。根据所采用的加工条件,可以生产约120nm至超过1000nm的玉米醇溶蛋白颗粒。进一步优化了操作条件,以增加最终玉米醇溶蛋白浓度并降低有机溶剂含量,同时仍获得小颗粒。核-壳蛋白纳米粒子的表面电势从低pH的正电位变为高pH的负电位,在pH 5处具有零电荷点。电子显微镜表明形成的蛋白质颗粒具有大致球形的形状。结果表明,双通道微流化器可用于通过反溶剂沉淀法连续形成蛋白质纳米颗粒。然而,当将微流化方法与简单分批方法进行比较时,在相似条件下产生的颗粒尺寸相当相似。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号