...
首页> 外文期刊>Food research international >Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept
【24h】

Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept

机译:多级模型作为包括定量微生物学和风险评估中的可变性和不确定性的工具。 Histeria单核细胞增生的热灭活作为概念证据

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Variability is inherent in biology and also substantial for microbial populations. In the context of food safety risk assessment, it refers to differences in the response of different bacterial strains (between-strain variability) and different cells (within-strain variability) to the same condition (e.g. inactivation treatment). However, its quantification based on empirical observations and its incorporation in predictive models is a challenge for both experimental design and (statistical) analysis.In this article we propose the use of multilevel models to quantify (different levels of) variability and uncertainty and include them in the predictions. As proof of concept, we analyse the microbial inactivation of Listeria monocytogenes to thermal treatments including different levels of variability (between-strain and within-strain) and uncertainty. The relationship between the microbial count and time was expressed using a (non-linear) Weibullian model. Moreover, we defined stochastic hypotheses to describe the different types of variation at the level of the kinetic parameters, as well as in the observations (microbial counts). The model parameters (kinetic parameters and variances) are estimated using Bayesian statistics.The multilevel approach was compared against an analogous, single-level model. The multilevel methodology shrinks extreme parameter estimates towards the mean according to uncertainty, thus mitigating overfitting. In addition, this approach enables to easily incorporate different levels of variation (between-strain and/or within-strain variability and/or uncertainty) in the predictions. On the other hand, multilevel (Bayesian) models are more complex to define, implement, analyse and communicate than single-level models. Nevertheless, their ability to incorporate different sources of variability in predictions make them very suitable for Quantitative Microbial Risk Assessment.
机译:可变性是生物学中固有的,并且对于微生物群体也是大量的。在食品安全风险评估的背景下,它是指不同细菌菌株(菌株变异性之间)和不同细胞(在菌株内变异性)对相同条件(例如灭活处理)的响应的差异。然而,基于经验观察的量化及其在预测模型中的统一是对实验设计和(统计)分析的挑战。在本文中,我们建议使用多级模型来量化(不同水平)变异性和不确定性并包括它们在预测中。作为概念证明,我们将李斯特菌单核细胞增生的微生物失活到热处理,包括不同水平的变异性(菌株和菌株之间)和不确定性。使用(非线性)微泡模型表示微生物计数和时间之间的关系。此外,我们定义了随机假设,以描述动力学参数水平的不同类型的变化,以及在观察中(微生物计数)。使用贝叶斯统计来估计模型参数(动力学参数和差异)。将多级方法与类似单级模型进行比较。根据不确定性,多级方法缩小了极端参数估计,从而减轻了过度拟合。此外,这种方法能够在预测中容易地纳入不同水平的变化(应变和/或应变内变异性和/或不确定度)。另一方面,多级(贝叶斯)模型比单级模型定义,实现,分析和通信更复杂。然而,他们在预测中纳入不同可变性来源的能力使它们非常适合定量微生物风险评估。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号