首页> 外文期刊>Finite fields and their applications >Probabilities of incidence between lines and a plane curve over finite fields
【24h】

Probabilities of incidence between lines and a plane curve over finite fields

机译:线和平面曲线在有限域上的入射概率

获取原文
获取原文并翻译 | 示例

摘要

We study the probability for a random line to intersect a given plane curve, over a finite field, in a given number of points over the same field. In particular, we focus on the limits of these probabilities under successive finite field extensions. Supposing absolute irreducibility for the curve, we show how a variant of the Chebotarev density theorem for function fields can be used to prove the existence of these limits, and to compute them under a mildly stronger condition, known as simple tangency. Partial results have already appeared in the literature, and we propose this work as an introduction to the use of the Chebotarev theorem in the context of incidence geometry. Finally, Veronese maps allow us to compute similar probabilities of intersection between a given curve and random curves of given degree. (C) 2019 Published by Elsevier Inc.
机译:我们研究了一条随机线在有限区域内与给定平面曲线在同一区域内给定数量的点相交的概率。特别是,我们关注于连续有限域扩展下这些概率的极限。假设曲线的绝对不可约性,我们说明了如何针对函数场使用Chebotarev密度定理的变体来证明这些极限的存在,并在中等强度的条件下(称为简单相切)计算它们。部分结果已经出现在文献中,我们建议将此工作作为切博塔列夫定理在入射几何背景下的介绍。最后,Veronese映射使我们能够计算给定曲线与给定度数的随机曲线之间相交的相似概率。 (C)2019由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号