首页> 外文期刊>Finite fields and their applications >A method for constructing a self-dual normal basis in odd characteristic extension fields
【24h】

A method for constructing a self-dual normal basis in odd characteristic extension fields

机译:一种在奇特征扩展域中构造自对偶正态基的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a useful method for constructing a self-dual normal basis in an arbitrary extension field F_(P~m) such that 4p does not divide m(p - 1) and m is odd. In detail, when the characteristic p and extension degree m satisfies the following conditions (1) and either (2a) or (2b); (1) 2km + 1 is a prime number, (2a) the order of p in F_(2km)+1 is 2km, (2b) 2 | km and the order of p in F_(2km)+1 is km, we can consider a class of Gauss period normal bases. Using this Gauss period normal basis, this paper shows a method to construct a self-dual normal basis in the extension field F_(P~m).
机译:本文提出了一种有用的方法,用于在任意扩展字段F_(P〜m)中构造自对偶正态基,这样4p不会除m(p-1)且m为奇数。详细地,当特性p和延伸度m满足以下条件(1)和(2a)或(2b)时; (1)2km +1是质数,(2a)F_(2km)+1中p的阶数是2km,(2b)2 | km,而F_(2km)+1中p的阶为km,我们可以考虑一类高斯周期正态基。利用该高斯周期正态基础,给出了一种在扩展场F_(P〜m)中构造自对偶正态基础的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号