首页> 外文期刊>Finite fields and their applications >Beta-expansion and continued fraction expansion over formal Laurent series
【24h】

Beta-expansion and continued fraction expansion over formal Laurent series

机译:在正式的Laurent系列上进行Beta扩展和连续分数扩展

获取原文
获取原文并翻译 | 示例

摘要

Let x ∈ I be an irrational element and n ≥ 1, where I is the unit disc in the field of formal Laurent series F((X~(-1))), we denote by k_n(x) the number of exact partial quotients in continued fraction expansion of x, given by the first n digits in the β-expansion of x, both expansions are based on F((X~(-1))). We obtain that lim inf_(n→+∞)(k_n(x)) = (deg β)/(2Q~*(x)), lim sup_(n→+∞)(k_n(x)) = (deg β)/(2Q_*(x)), where Q~*(x), Q_*(x) are the upper and lower constants of x, respectively. Also, a central limit theorem and an iterated logarithm law for {k_n(x)}_n ≥ 1 are established.
机译:设x∈I是一个无理元素,且n≥1,其中I是形式Laurent级数F((X〜(-1)))的单位圆盘,我们用k_n(x)表示精确部分数x的连续分数展开式的商,由x的β展开式的前n个数字给出,这两个展开式均基于F((X〜(-1)))。我们得到lim inf_(n→+∞)(k_n(x))/ n =(degβ)/(2Q〜*(x)),lim sup_(n→+∞)(k_n(x))/ n =(degβ)/(2Q _ *(x)),其中Q〜*(x),Q _ *(x)分别是x的上下常数。此外,建立了{k_n(x)} _ n≥1的中心极限定理和迭代对数律。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号