首页> 外文期刊>Finite fields and their applications >Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field
【24h】

Polar varieties, Bertini's theorems and number of points of singular complete intersections over a finite field

机译:极值变体,贝蒂尼定理和有限域上奇异完整交点的点数

获取原文
获取原文并翻译 | 示例

摘要

Let V is contained in P~n(F_q) be a complete intersection defined over a finite field F_q of dimension r and singular locus of dimension at most s, and let π : V → P~(s+1)(F_q) be a generic linear mapping. We obtain an effective version of the Bertini smoothness theorem concerning π, namely an explicit upper bound of the degree of a proper Zariski closed subset of P~(s+1)(F_q)) which contains all the points defining singular fibers of π. For this purpose we make use of the concept of polar variety associated with the set of exceptional points of π. As a consequence, we obtain results of existence of smooth rational points of V, that is, conditions on q which imply that V has a smooth F_q-rational point. Finally, for s = r - 2 and s = r - 3 we estimate the number of F_q-rational points and smooth F_q-rational points of V.
机译:令V包含在P〜n(F_q)中,它是在维度r的有限域F_q和维度s的奇异轨迹上定义的完整交集,并且π:V→P〜(s + 1)(F_q)为通用线性映射。我们获得了有关π的Bertini光滑定理的有效版本,即P〜(s + 1)(F_q))的适当Zariski闭合子集的度的明确上限,该子集包含所有定义π奇异纤维的点。为此,我们利用与π例外点集相关的极地变化的概念。结果,我们获得了V的光滑有理点的存在结果,即存在q的条件,这意味着V具有光滑的F_q有理点。最后,对于s = r-2和s = r-3,我们估计V的F_q理性点和平滑F_q理性点的数量。

著录项

  • 来源
    《Finite fields and their applications》 |2015年第1期|42-83|共42页
  • 作者单位

    Ciclo Basico Comun, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon Ⅲ (1428), Buenos Aires, Argentina, Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150 (B1613GSX), Los Polvorines, Buenos Aires, Argentina, National Council of Science and Technology (CONICET), Argentina;

    Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150 (B1613GSX), Los Polvorines, Buenos Aires, Argentina, National Council of Science and Technology (CONICET), Argentina;

    Ciclo Basico Comun, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon Ⅲ (1428), Buenos Aires, Argentina, National Council of Science and Technology (CONICET), Argentina, Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150 (B1613GSX), Los Polvorines, Buenos Aires, Argentina;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Varieties over finite fields; Rational points; Singular locus; Bertini smoothness theorem; Polar varieties;

    机译:有限域的多样性;理性点;单一位点;贝蒂尼光滑定理;极地品种;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号