首页> 外文期刊>Finite Elements in Analysis and Design >A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization
【24h】

A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization

机译:一种基于深度学习的柔性拓扑纳米材料计算材料设计的新方法

获取原文
获取原文并翻译 | 示例

摘要

We present a deep learning method to investigate the effect of flexoelectricity in nanostructures. For this purpose, deep neural network (DNN) algorithm is employed to map the relation between the inputs and the material response of interest. The DNN model is trained and tested making use of database that has been established by solving the governing equations of flexoelectricity using a NURBS-based IGA formulation at design points in the full probability space of the input parameters. Firstly, pure flexoelectric cantilever nanobeam is investigated under mechanical and electrical loading conditions. Then, structures of composite system constituted by two non-piezoelectric material phases are addressed in order to find the optimized topology with respect to the energy conversion factor. The results show promising capabilities of the proposed method, in terms of accuracy and computational efficiency. The deep learning method we used have produced superior optimal designs compared to the numerical methods. The findings of this study will be of profound interest to researcher involved further in the optimization and design of flexoelectric structures.
机译:我们提出了一种深度学习方法,以研究柔性电在纳米结构中的作用。为此,采用深度神经网络(DNN)算法来映射输入与感兴趣的材料响应之间的关系。 DNN模型是通过使用数据库进行训练和测试的,该数据库是通过在输入参数的全部概率空间中的设计点上使用基于NURBS的IGA公式求解柔性电的控制方程而建立的。首先,研究了在机械和电负载条件下的纯挠性悬臂纳米束。然后,研究了由两个非压电材料相构成的复合系统的结构,以便找到关于能量转换因子的最佳拓扑。结果表明,该方法在准确性和计算效率方面具有广阔的前景。与数值方法相比,我们使用的深度学习方法产生了卓越的最佳设计。进一步参与柔性电结构的优化和设计的研究人员将对这项研究的发现具有深远的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号