首页> 外文学位 >Computational Study of Wolff's Law utilizing Design Space Topology Optimization: A new method for Hip Prosthesis Design.
【24h】

Computational Study of Wolff's Law utilizing Design Space Topology Optimization: A new method for Hip Prosthesis Design.

机译:利用设计空间拓扑优化的沃尔夫定律的计算研究:髋关节假体设计的新方法。

获取原文
获取原文并翻译 | 示例

摘要

The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency, thereby creating a naturally optimum structure. The primary objective of the research was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to create a numerical framework to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyze the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175m mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic human trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur data from the literature using a variety of visualization techniques, including radiography and computed tomography (CT). The remodeling predictions qualitatively revealed several anisotropic trabecular regions comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with CT analyses. The strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict three-dimensional bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as Wolff hypothesized.;The secondary objective was to revise this computational framework to perform the first in-silico hip replacement considering micro-level bone remodeling. Two different commercially available hip prostheses were quantitatively analyzed using stress, strain energy, and bone mineral density as performance criteria and qualitatively visualized using the techniques above. Several important factors for stable fixation, determined from clinical evaluations, were evident: high levels of proximal bone loss, distal bone growth, and medial densification. The results suggest the DSO method can be utilized for comparative prosthetic implant stem design, uniquely considering post-operation bone remodeling as a design criterion.
机译:骨骼重塑定律,通常称为沃尔夫定律,断言内部小梁骨骼适应外部负荷,以主要应力轨迹重新定向,以最大化机械效率,从而创造出自然最佳的结构。该研究的主要目的是利用一种称为设计空间优化(DSO)的高级结构优化算法,创建一个数值框架,以对人体股骨近端进行微级三维有限元骨重塑仿真并分析结果确定Wolff假设的有效性。 DSO通过将材料迭代地分配到最高负载的区域来优化材料的布局,同时更改设计域以提高计算效率。结果是具有最小的柔韧性和增加的刚度的“完全受力”结构。大规模的计算仿真利用了175m的网格分辨率以及步行和爬楼梯的例行日常装载活动。使用各种可视化技术(包括射线照相和计算机断层扫描(CT)),将由此产生的各向异性的人类小梁结构与Wolff的运动轨迹假说和自然股骨数据进行比较。重塑预测定性地揭示了几个与自然人股骨相当的各向异性小梁区域。在定量上,计算结果得出的各个区域骨体积分数与CT分析一致。在优化过程中,应变能变得更加均匀。这意味着提高了机械效率。逼真的模拟小梁几何结构表明,DSO方法可以准确预测由于机械载荷引起的三维骨适应,并且正如Wolff假设的那样,股骨近端是最佳结构。 -硅胶髋关节置换,考虑微观水平的骨重塑。使用应力,应变能和骨矿物质密度作为性能标准,对两种不同的市售髋关节假体进行了定量分析,并使用上述技术进行了定性分析。根据临床评估确定的稳定固定的几个重要因素是显而易见的:近端骨质丢失,远端骨质生长和内侧致密化水平高。结果表明,DSO方法可用于比较假体植入物茎的设计,唯一考虑将术后骨重塑作为设计标准。

著录项

  • 作者

    Boyle, Christopher H.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2010
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号