首页> 外文期刊>Finite Elements in Analysis and Design >The successive node snapping scheme: A method to obtain conforming meshes for an evolving curve in 2D and 3D
【24h】

The successive node snapping scheme: A method to obtain conforming meshes for an evolving curve in 2D and 3D

机译:连续节点捕捉方案:一种获得2D和3D演化曲线的符合网格的方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel method called the successive node snapping (SNS) scheme to construct conforming meshes for an evolving curve in 2D and 3D, with a given simplicial background mesh. In the procedure, only a small fraction of nodes of the background mesh are moved and the nodal connectivities remain unaltered. The core of the method is to snap chosen nodes to the evolving curve and to simultaneously relax nodes within the vicinity of the curve. Following the curve, we adjust each portion of the curve's neighborhood successively to obtain a mesh conforming to the entire curve. The curve and the background mesh are under very mild geometric requirements: The curve can be open or closed, and the background mesh can have obtuse-angled triangles or tetrahedra as well as acute-angled ones. With no a priori conformity requirements, the same background mesh can be utilized for a series of snapshots of the evolving curve, permitting tractable variable remapping. Since all the operations on the mesh are local, the method is especially suitable for evolving curve problems where the curve only updates a small portion each time, for example, crack propagation in 2D and dislocation dynamics in 3D.
机译:我们介绍了一种新颖的方法,称为连续节点捕捉(SNS)方案,可在给定的简单背景网格的情况下构造2D和3D演化曲线的符合网格。在该过程中,仅背景网格的一小部分节点移动,并且节点连接性保持不变。该方法的核心是将选定的节点捕捉到不断变化的曲线,并同时使曲线附近的节点松弛。跟随曲线,我们依次调整曲线邻域的每个部分,以获得与整个曲线一致的网格。曲线和背景网格在非常温和的几何要求下:曲线可以是开放的或闭合的,并且背景网格可以具有钝角三角形或四面体以及锐角三角形。在没有先验一致性要求的情况下,可以将相同的背景网格用于演化曲线的一系列快照,从而可以进行易于处理的变量重新映射。由于网格上的所有操作都是局部的,因此该方法特别适用于不断发展的曲线问题,其中曲线每次仅更新一小部分,例如2D中的裂纹扩展和3D中的位错动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号