首页> 外文期刊>Finite Elements in Analysis and Design >An extended arbitrary Lagrangian-Eulerian finite element method for large deformation of solid mechanics
【24h】

An extended arbitrary Lagrangian-Eulerian finite element method for large deformation of solid mechanics

机译:固体力学大变形的扩展拉格朗日-欧拉有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new computational technique is presented based on the extended arbitrary Lagrangian-Eulerian finite element method (X-ALE-FEM) for large deformation of solid mechanic problems. An arbitrary Lagrangian-Eulerian (ALE) technique is employed to capture the advantages of both Lagrangian and Eulerian methods and alleviate the drawbacks of the mesh distortion in Lagrangian formulation. The X-FEM procedure is implemented to capture the discontinuities independently of element boundaries. The process is accomplished by performing a splitting operator to separate the material (Lagrangian) phase from convective (Eulerian) phase, and partitioning the Lagrangian and relocated meshes with some triangular sub-elements whose Gauss points are used for integration of the domain of elements. In order to demonstrate the efficiency of X-ALE-FEM technique in large deformations, several numerical examples including the die pressing with flexible and rigid central cores and coining problem are presented and the results are compared with those of classical FE and X-FEMs.
机译:本文提出了一种基于扩展的任意拉格朗日-欧拉有限元方法(X-ALE-FEM)的新的计算技术,用于求解固体力学问题的大变形。拉格朗日-欧拉(ALE)技术可用于捕获拉格朗日和欧拉方法的优点,并缓解拉格朗日公式中网格变形的缺点。 X-FEM程序的实现是独立于元素边界捕获不连续性。该过程是通过执行分裂算子将物质(拉格朗日)相与对流(欧拉)相分离,并将拉格朗日和重新定位的网格与一些三角形子元素进行划分的,这些子元素的高斯点用于元素域的积分。为了证明X-ALE-FEM技术在大变形中的效率,给出了几个数值示例,包括具有柔性和刚性中心核的压模以及压花问题,并将结果与​​经典的FE和X-FEM进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号