首页> 外文期刊>Finite elements in analysis & design >Boundary recovery for Delaunay tetrahedral meshes using local topological transformations
【24h】

Boundary recovery for Delaunay tetrahedral meshes using local topological transformations

机译:使用局部拓扑变换的Delaunay四面体网格的边界恢复

获取原文
获取原文并翻译 | 示例

摘要

Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially three new active faces are created. This methodology is the underpinnings of our LAST RESORT method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved.
机译:存在许多高质量的体积网格生成系统。但是,没有任何策略可以解决所有几何情况,而不会损害某些元素的质量。许多3D网格生成算法都是基于Delaunay四面体化的,该算法经常无法保留输入边界表面拓扑。对于生物医学应用而言,这种表面保护至关重要,因为它们通常包含多个相连的目标材料区域。在本文中,我们提出了一种作为后处理方法的算法,该算法可优化受损元素质量的局部区域并恢复原始边界表面小平面(三角形),而与原始网格生成策略无关。该算法在缺少的边界面或受损元素附近雕刻出一个小的子体积,从而创建一个空腔。如果任务是恢复表面边界小平面,则空腔中将存在自然的出口孔。首先用缺失的边界表面面修补此孔,然后再用其他面膜修补以密封空腔。如果任务是改善受损区域,则腔已被密封。腔壳的每个三角形小面都被分类为活动面,并且可以连接到另一个形成四面体的壳节点。在此过程中,从活动面列表中删除了四面体的基极,并可能创建了三个新的活动面。这种方法是我们LAST RESORT方法的基础。每个活动的面孔都可以看作是一棵树的树干。详尽的呼吸和深度搜索将识别所有可能的四面体组合以唯一填充空腔。我们简化了此递归过程,将时间复杂度降低了几个数量级。原始曲面边界(内部和外部)已完全恢复,受损区域的质量得到了改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号