首页> 外文期刊>Fatigue & Fracture of Engineering Materials & Structures >Stress intensity factor estimation for unbalanced rotating cracked shafts by artificial neural networks
【24h】

Stress intensity factor estimation for unbalanced rotating cracked shafts by artificial neural networks

机译:基于人工神经网络的不平衡裂纹轴应力强度因子估计。

获取原文
获取原文并翻译 | 示例

摘要

The knowledge of the stress intensity factor (SIF) values along a crack front is essential to calculate the crack growth rate and the remaining life of a mechanical component. In the case of a rotating shaft, usually it presents disalignments, which modify the SIF data with regard to a balanced one. This paper presents the use of an artificial neural network (ANN) for estimating the SIF at the crack front in an unbalanced shaft under rotating bending, previously, a quasi-static numerical (finite element) model, which simulates a rotating shaft, has been developed to create the training cases for the ANN. The obtained results allow to study the influence of the unbalance of rotating shafts in the crack breathing mechanism and will allow to predict the influence of this behaviour on the values of the SIF and in the propagation of cracks.
机译:沿裂纹前沿的应力强度因子(SIF)值的知识对于计算裂纹扩展速率和机械部件的剩余寿命至关重要。在旋转轴的情况下,通常会出现偏差,这会相对于平衡轴修改SIF数据。本文介绍了使用人工神经网络(ANN)估算不平衡轴在旋转弯曲下裂纹前沿的SIF,以前,已经使用了模拟旋转轴的准静态数值(有限元)模型。开发以创建ANN的培训案例。获得的结果允许研究旋转轴的不平衡对裂纹呼吸机制的影响,并且可以预测这种行为对SIF值和裂纹扩展的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号