首页> 外文期刊>Extremes >Deflection of a viscoelastic cantilever under a uniform surface stress: Applications to static-mode microcantilever sensors undergoing adsorption
【24h】

Deflection of a viscoelastic cantilever under a uniform surface stress: Applications to static-mode microcantilever sensors undergoing adsorption

机译:均匀表面应力作用下的粘弹性悬臂梁的挠曲:在经历吸附的静态模式微悬臂梁传感器上的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The equation governing the curvature of a viscoelastic microcantilever beam loaded with a uniform surface stress is derived. The present model is applicable to static-mode microcantilever sensors made with a rigid polymer, such as SU-8. An analytical solution to the differential equation governing the curvature is given for a specific surface stress representing adsorption of analyte onto the viscoelastic beam's surface. The solution for the bending of the microcantilever shows that, in many cases, the use of Stoney's equation to analyze stress-induced deflection of viscoelastic microcantilevers (in the present case due to surface analyte adsorption) can lead to poor predictions of the beam's response. It is shown that using a viscoelastic substrate can greatly increase sensitivity (due to a lower modulus), but at the cost of a longer response time due to viscoelastic creep in the microcantilever. In addition, the effects of a coating on the cantilever are considered. By defining effective moduli for the coated-beam case, the analytical solution for the uncoated case can still be used. It is found that, unlike the case of a silicon microcantilever, the stress in the coating due to bending of a polymer cantilever can be significant, especially for metal coatings. The theoretical results presented here can also be used to extract time-domain viscoelastic properties of the polymer material from beam response data.
机译:推导了控制具有均匀表面应力的粘弹性微悬臂梁曲率的方程。本模型适用于由刚性聚合物(例如SU-8)制成的静态模式微悬臂梁传感器。针对表示分析物在粘弹性梁表面的吸附的特定表面应力,给出了控制曲率的微分方程的解析解。微悬臂梁弯曲的解决方案表明,在许多情况下,使用Stoney方程分析应力引起的粘弹性微悬臂梁的挠度(在当前情况下是由于表面分析物的吸附)可能导致对梁响应的预测不佳。结果表明,使用粘弹性基底可以大大提高灵敏度(由于较低的模量),但是由于微悬臂梁中的粘弹性蠕变,其响应时间较长。另外,考虑了涂层对悬臂的影响。通过为涂覆光束的情况定义有效模量,仍然可以使用未涂覆光束的分析溶液。已经发现,与硅微悬臂梁的情况不同,特别是对于金属涂层,由于聚合物悬臂梁的弯曲而引起的涂层中的应力可能很大。此处介绍的理论结果还可以用于从梁响应数据中提取聚合物材料的时域粘弹性质。

著录项

  • 来源
    《Extremes》 |2009年第6期|1117-1126|共10页
  • 作者单位

    Department of Electrical and Computer Engineering, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA;

    Department of Electrical and Computer Engineering, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA;

    Department of Civil and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号