首页> 外文期刊>Expert Systems >Simulating and modelling the DAX index and the USO Etf financial time series by using a simple agent-based learning architecture
【24h】

Simulating and modelling the DAX index and the USO Etf financial time series by using a simple agent-based learning architecture

机译:使用简单的代理的学习架构模拟和建模DAX指数和USO ETF金融时间序列

获取原文
获取原文并翻译 | 示例

摘要

This work presents an extensive case study on modelling the DAX (Deutscher Aktienindex) index and United States Oil Fund (USO) exchange-traded fund (Etf) time series with the financial agent-based system learning financial agent-based simulator (L-FABS) that exploits simulated annealing as a learning method. The USO Etf time series is highly correlated with oil price behaviour, and the DAX index is based on the weighted and accumulated behaviour of the share prices of some of the largest companies traded on the Frankfurt Stock Exchange. These two time series are driven by completely different economic factors and thus provide two diverse empirical settings to evaluate the effectiveness of our methodology. Our experimentation shows that a relatively simple computational representation of real financial markets is effective in capturing the overall behaviour of the time series with varying approximation levels while the prediction target is moved into the future. The reported experimental investigation of L-FABS shows that it is robust notwithstanding the learning method used and the data sets exploited. L-FABS indeed produced a relatively low approximation error in several settings even when evaluated with respect to other modelling approaches, for example, 0.88% and 1.61% errors on average for 1 day ahead experiments in, respectively, DAX index and USO Etf.
机译:这项工作提出了一种广泛的案例研究,与达克斯(Deutscher AktienIndex)指数和美国石油基金(USO)交易所交易基金(ETF)时间序列建立了广泛的案例研究,与基于金融代理的系统学习金融代理的模拟器(L-Fab )利用模拟退火作为学习方法。 USO ETF时间序列与油价行为高度相关,DAX指数基于法兰克福证券交易所中一些最大公司的股价的加权和累积行为。这两个时间序列由完全不同的经济因素驱动,从而提供两个不同的经验设置,以评估我们的方法的有效性。我们的实验表明,实际金融市场的相对简单的计算表示有效地捕获时间序列的整体行为,而预测目标被移动到未来。报告的L-FAB的实验研究表明,尽管使用的学习方法和利用数据集,它是强大的。即使在关于其他建模方法的评估,例如,分别为0.88%和1.61%的误差,分别为达克索指数和USO ETF,也确实在几种情况下产生了几种设置中的近似近似误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号