首页> 外文期刊>Expert systems with applications >Applying deep neural networks for the automatic recognition of sign language words: A communication aid to deaf agriculturists
【24h】

Applying deep neural networks for the automatic recognition of sign language words: A communication aid to deaf agriculturists

机译:应用深神经网络以自动识别手语言词汇:对聋院农业的沟通援助

获取原文
获取原文并翻译 | 示例

摘要

One of the major challenges that deaf people face in modern societal life is communication. For those engaged in agricultural jobs, efficiency at work and productivity are deeply related to the quality of deciphering the sign language used by the deaf farmers. Employing sign language interpreters is not a pragmatic solution to this problem. There comes the need for developing a reliable system for automatic sign language recognition (SLR). This paper reports a work on the recognition of hand gestures for the Indian sign language (ISL) words commonly used by deaf farmers. A hybrid deep learning model with convolutional long short term memory (LSTM) network has been exploited for gesture classification. The model has attained an average classification accuracy of 76.21% on the proposed dataset of ISL words from the agricultural domain.
机译:聋人在现代社会生活中面临的主要挑战之一是沟通。 对于从事农业工作的人,工作和生产力的效率与破译聋人使用的手语的质量深入相关。 使用手语口译员不是对此问题的务实解决方案。 需要开发可靠的自动标志语言识别系统(SLR)。 本文报告了对聋人常用的印度手语(ISL)单词的手势的识别工作。 具有卷积长短期内存(LSTM)网络的混合深度学习模型已被利用用于手势分类。 该模型在农业领域的ISL文字的拟议数据集上达到了76.21%的平均分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号