首页> 外文期刊>Expert systems with applications >DPP-VSE: Constructing a variable selection ensemble by determinantal point processes
【24h】

DPP-VSE: Constructing a variable selection ensemble by determinantal point processes

机译:DPP-VSE:通过决定点流程构建变量选择集合

获取原文
获取原文并翻译 | 示例

摘要

As an effective tool to analyze high-dimensional data, variable selection is playing an increasingly important role in many fields. In recent years, variable selection ensembles (VSEs) have gained much interest of researchers due to their great potential to improve selection accuracy and to stabilize the results of traditional selection methods. Inspired by one common practice of Bayesian methods, we propose in this paper a novel technique named DPP-VSE to build a VSE by utilizing determinantal point processes (DPP) to infer a distribution of model size. By sampling from this distribution, DPP-VSE has the advantage that the number of variables for a base learner to select can be automatically determined. In contrast to other VSE strategies, it has fewer parameters for users to specify. The experiments conducted with both synthetic and real data illustrate that DPP-VSE performs best under most circumstances when being evaluated with several metrics. Hence, DPP-VSE can be seen as an effective and easy to use method to solve variable selection problems.
机译:作为分析高维数据的有效工具,可变选择在许多领域中发挥着越来越重要的作用。近年来,由于其巨大潜力来提高选择准确性并稳定传统选择方法的结果,可变选择集合(VSE)对研究人员产生了很多兴趣。灵感灵感来自贝叶斯方法的一个常见做法,我们提出了一种新的技术,通过利用确定性点过程(DPP)来推断模型大小的分布来构建DPP-VSE的新技术。通过从该分布中采样,DPP-VSE具有以下优点:可以自动确定要选择的基础学习者的变量数。与其他VSE策略相比,它有更少的用户指定参数。用合成和实际数据进行的实验说明了在用几个度量标准评估时,在大多数情况下,DPP-VSE在大多数情况下表现最佳。因此,DPP-VSE可以被视为求解变量选择问题的有效且易于使用的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号