首页> 外文期刊>Neural Networks, IEEE Transactions on >Constructing Ensembles of Classifiers by Means of Weighted Instance Selection
【24h】

Constructing Ensembles of Classifiers by Means of Weighted Instance Selection

机译:通过加权实例选择构造分类器集合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we approach the problem of constructing ensembles of classifiers from the point of view of instance selection. Instance selection is aimed at obtaining a subset of the instances available for training capable of achieving, at least, the same performance as the whole training set. In this way, instance selection algorithms try to keep the performance of the classifiers while reducing the number of instances in the training set. Meanwhile, boosting methods construct an ensemble of classifiers iteratively focusing each new member on the most difficult instances by means of a biased distribution of the training instances. In this work, we show how these two methodologies can be combined advantageously. We can use instance selection algorithms for boosting using as objective to optimize the training error weighted by the biased distribution of the instances given by the boosting method. Our method can be considered as boosting by instance selection. Instance selection has mostly been developed and used for $k$ -nearest neighbor ($k$ -NN) classifiers. So, as a first step, our methodology is suited to construct ensembles of $k$ -NN classifiers. Constructing ensembles of classifiers by means of instance selection has the important feature of reducing the space complexity of the final ensemble as only a subset of the instances is selected for each classifier. However, the methodology is not restricted to $k$-NN classifier. Other classifiers, such as decision trees and support vector machines (SVMs), may also benefit from a smaller training set, as they produce simpler classifiers if an instance selection algorithm is performed before training. In the experimental section, we show that the prop-n-nosed approach is able to produce better and simpler ensembles than random subspace method (RSM) method for $k$-NN and standard ensemble methods for C4.5 and SVMs.
机译:在本文中,我们从实例选择的角度解决了构建分类器集合的问题。实例选择旨在获得可用于训练的实例子集,该子集至少能够实现与整个训练集相同的性能。这样,实例选择算法会尝试在减少训练集中实例数量的同时保持分类器的性能。同时,增强方法通过训练实例的有偏分布,构造了一组分类器,将每个新成员迭代地集中在最困难的实例上。在这项工作中,我们展示了如何将这两种方法有利地结合起来。我们可以使用实例选择算法进行提升,并以此为目标来优化由提升方法给出的实例的偏差分布加权的训练误差。通过实例选择,我们的方法可以被认为是增强方法。实例选择主要是针对$ k $-最近邻居($ k $ -NN)分类器开发的。因此,第一步,我们的方法适合构建$ k $ -NN分类器的集合。通过实例选择构造分类器的集合具有降低最终集合的空间复杂度的重要特征,因为对于每个分类器仅选择了实例的子集。但是,该方法不仅限于$ k $ -NN分类器。其他分类器(例如决策树和支持向量机(SVM))也可能会受益于较小的训练集,因为如果在训练之前执行了实例选择算法,它们会生成更简单的分类器。在实验部分中,我们表明,对于$ k $ -NN和针对C4.5和SVM的标准集成方法,prop-n-nosed方法能够生成更好,更简单的合奏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号