首页> 外文期刊>Expert systems with applications >An adaptive deep learning framework to classify unknown composite power quality event using known single power quality events
【24h】

An adaptive deep learning framework to classify unknown composite power quality event using known single power quality events

机译:一种自适应的深度学习框架,用于使用已知的单功率质量事件对未知的复合电源质量事件进行分类

获取原文
获取原文并翻译 | 示例

摘要

Distributed generation (DG) sources are preferred to meet today's energy needs effectively. The addition of many different types of renewable energy sources to the grid causes various problems in signal quality. Detection and classification of these problems increase efficiency by both the producer and the consumer. In the literature, incredibly singular and some composite power quality disturbance (PQD) detection is performed effectively. However, the multitude of composite PQD variations degrades the performance of existing algorithms. In this study, the classification of all PQD variations that may occur is performed by using singular PQD and some composite PQD signals. A different number of subcomponents representing the signal are created according to each signal characteristic. Instantaneous energies from these subcomponents are used as deep learning (DL) input. Deep learning cycles are created as much as the instantaneous energy number of each signal. Each cycle has specific features of defining a single event. Therefore, the proposed approach is able to classify composite PQD signals that it has not encountered before. The proposed method's performance is first evaluated with the known PQD events and compared with the current state-of-the-art methods in the literature. Then, a dataset containing the combinations of different events not encountered during the training is created, and the performance is evaluated on this dataset. In the experiments performed, it is revealed that the proposed framework produces higher performance than other state-of-the-art methods
机译:分布式发电(DG)来源是优选有效满足今天的能源需求。向网格中添加许多不同类型的可再生能源导致信号质量的各种问题。这些问题的检测和分类通过生产者和消费者提高了效率。在文献中,有效地执行令人难以置信的奇异和一些复合电能质量扰动(PQD)检测。然而,众多的复合PQD变化会降低现有算法的性能。在该研究中,通过使用奇异PQD和一些复合PQD信号来执行可能发生的所有PQD变化的分类。根据每个信号特征创建表示信号的不同数量的子组件。来自这些子组件的瞬时能量用作深度学习(DL)输入。深入学习周期被创建为每个信号的瞬时能量数。每个周期都具有定义单个事件的特定功能。因此,所提出的方法能够对其之前没有遇到的复合PQD信号进行分类。所提出的方法的性能首先利用已知的PQD事件进行评估,并与文献中的当前最先进的方法进行比较。然后,创建包含在培训期间未遇到的不同事件组合的数据集,并且在此数据集中评估性能。在进行的实验中,揭示所提出的框架比其他最先进的方法产生更高的性能

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|115023.1-115023.13|共13页
  • 作者单位

    King Abdulaziz Univ Ctr Res Excellence Renewable Energy & Power Syst Jeddah 21589 Saudi Arabia|King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia;

    King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia;

    King Abdulaziz Univ Ctr Res Excellence Renewable Energy & Power Syst Jeddah 21589 Saudi Arabia|King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia;

    Amasya Univ Dept Elect & Elect Engn Technol Fac TR-05100 Amasya Turkey;

    Abant Izzet Baysal Univ Dept Elect & Elect Engn Bolu Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Power quality disturbance (PQD); Deep learning; CNN; Classification; Signal monitoring; Signal disturbance;

    机译:电能质量干扰(PQD);深入学习;CNN;分类;信号监控;信号干扰;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号