首页> 外文期刊>Expert systems with applications >SUFMACS: A machine learning-based robust image segmentation framework for COVID-19 radiological image interpretation
【24h】

SUFMACS: A machine learning-based robust image segmentation framework for COVID-19 radiological image interpretation

机译:SUFMACS:基于机器学习的鲁棒图像分割框架,用于Covid-19放射图像解释

获取原文
获取原文并翻译 | 示例

摘要

The absence of dedicated vaccines or drugs makes the COVID-19 a global pandemic, and early diagnosis can be an effective prevention mechanism. RT-PCR test is considered as one of the gold standards worldwide to confirm the presence of COVID-19 infection reliably. Radiological images can also be used for the same purpose to some extent. Easy and no contact acquisition of the radiological images makes it a suitable alternative and this work can help to locate and interpret some prominent features for the screening purpose. One major challenge of this domain is the absence of appropriately annotated ground truth data. Motivated from this, a novel unsupervised machine learning-based method called SUFMACS (SUperpixel based Fuzzy Memetic Advanced Cuckoo Search) is proposed to efficiently interpret and segment the COVID-19 radiological images. This approach adapts the superpixel approach to reduce a large amount of spatial information. The original cuckoo search approach is modified and the Luus-Jaakola heuristic method is incorporated with McCulloch's approach. This modified cuckoo search approach is used to optimize the fuzzy modified objective function. This objective function exploits the advantages of the superpixel. Both CT scan and X-ray images are investigated in detail. Both qualitative and quantitative outcomes are quite promising and prove the efficiency and the real-life applicability of the proposed approach.
机译:没有专用的疫苗或药物使Covid-19成为全球性大流行,早期诊断可以是有效的预防机制。 RT-PCR测试被认为是全球金标准之一,以确认可靠性Covid-19感染的存在。放射性图像也可以在一定程度上用于相同的目的。轻松且无联系收购放射线图像使其成为合适的替代方案,并且这项工作可以帮助找到和解释用于筛选目的的一些突出特征。这个领域的一个主要挑战是缺乏适当的注释的地面真理数据。从此激励,提出了一种名为SUFMACS(基于SuperPixel的模糊膜进探测)的新型无监督机器学习方法,以有效地解释和分割Covid-19放射图像。这种方法适应超像素方法来减少大量空间信息。修改了原始的咕咕搜索方法,并将Luus-jaakola启发式方法包含在McCulloch的方法中。这种修改后的Cuckoo搜索方法用于优化模糊修改的目标函数。该目标函数利用超像素的优势。详细研究了CT扫描和X射线图像。定性和量化结果都非常有前途,并证明了所提出的方法的效率和现实生活适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号