首页> 外文期刊>Expert systems with applications >Cost-sensitive semi-supervised deep learning to assess driving risk by application of naturalistic vehicle trajectories
【24h】

Cost-sensitive semi-supervised deep learning to assess driving risk by application of naturalistic vehicle trajectories

机译:经济敏感的半监督深度学习,通过应用自然主义车辆轨迹来评估驾驶风险

获取原文
获取原文并翻译 | 示例

摘要

Most traffic accidents are caused by driver-related factors such as poor perception, aggressive decision-making, or improper maneuvering. Therefore, it is critical to evaluate and predict driving risks to provide drivers with timely feedback. However, risk assessment involves challenges related to a lack of labeled driving data and the presence of data imbalance in the description of different driving risk levels. To address these challenges, a costsensitive semi-supervised deep learning method is developed to obtain driving risk scores based on naturalistic vehicle trajectories. A convolutional neural network and a long short-term memory encoder/decoder network are embedded into a semi-supervised framework that uses only a small labeled dataset to label the remaining unlabeled data and produce a trained network model. As fixed weights cannot adapt to changes in the degree of class imbalance that occur over progressive semi-supervised learning iterations, an adaptive over-balanced crossentropy loss function is developed to adaptively maintain an over-balanced state for the high-risk class to achieve cost-sensitive learning. The experimental results indicate that the accuracy of the proposed method in determining the current and future 2 s risk scores is 96.63% and 92.06%, respectively, thereby constituting the best comprehensive performance among existing machine learning methods. Moreover, the method is verified using a spatio-temporal diagram of driving risk-trajectory and a current-future risk score diagram. The findings demonstrate that the proposed method can be used to assess driving risks in a reliable and robust manner.
机译:大多数交通事故是由司机相关因素引起的,例如差的感知,积极决策或机动不当。因此,评估和预测驾驶风险至关重要,以提供具有及时反馈的驱动因素。然而,风险评估涉及与缺乏标记的驾驶数据以及在不同驾驶风险水平的描述中存在数据不平衡的挑战。为了解决这些挑战,开发了一种基于自然主义车辆轨迹的驾驶风险评分来实现高等素的半监督深度学习方法。卷积神经网络和长短期内存编码器/解码器网络嵌入到半监督框架中,仅使用小标记的数据集来标记剩余的未标记数据并产生培训的网络模型。由于固定权重不能适应逐行半监督学习迭代发生的类别不平衡的变化,开发了一种自适应的过平衡的联卷损失函数,以适应性地维持高风险等级的过分平衡状态以实现成本 - 学习。实验结果表明,在确定当前和未来的2次风险评分时,所提出的方法的准确性分别为96.63%和92.06%,从而构成了现有机器学习方法中的最佳综合性能。此外,使用驾驶风险轨迹的时空图和当前的风险分数图来验证该方法。该发现表明,所提出的方法可用于以可靠和稳健的方式评估驾驶风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号