首页> 外文期刊>Expert systems with applications >A compound of feature selection techniques to improve solar radiation forecasting
【24h】

A compound of feature selection techniques to improve solar radiation forecasting

机译:一种改进太阳辐射预测的特征选择技术的化合物

获取原文
获取原文并翻译 | 示例

摘要

The prediction of Global Horizontal Irradiance (GHI) allows to estimate in advance the future energy production of photovoltaic systems, thus ensuring their full integration into the electricity grids. This paper investigates the effectiveness of using exogenous inputs in performing short-term GHI forecasting. To this aim, we identified a subset of relevant input variables for predicting GHI by applying different feature selection techniques. The results revealed that the most significant input variables for predicting GHI are ultraviolet index, cloud cover, air temperature, relative humidity, dew point, wind bearing, sunshine duration and hour-of-the-day. The predictive performance of the selected features was evaluated by feeding them into five different machine learning models based on Feedforward, Echo State, 1D-Convolutional, Long Short-Term Memory neural networks and Random Forest, respectively. Our Long Short-Term Memory solution presents the best prediction performance among the five models, predicting GHI up to 4 h ahead with a Mean Absolute Deviation (MAD) of 24.51%. Then, to demonstrate the effectiveness of using exogenous inputs for short-term GHI forecasting, we compare the multivariate models against their univariate counterparts. The results show that exogenous inputs significantly improve the forecasting performance for prediction horizons greater than 15 min, reducing errors by more than 22% in 4 h ahead predictions, while for very short prediction horizons (i.e. 15 min) the improvements are negligible.
机译:全局水平辐照度(GHI)的预测允许预先估计光伏系统的未来能量产生,从而确保其完全集成到电网中。本文研究了在执行短期GHI预测中使用外源投入的有效性。为此目的,我们通过应用不同的特征选择技术来确定相关输入变量的子集,用于预测GHI。结果表明,用于预测GHI的最重要的输入变量是紫外线指数,云覆盖,空气温度,相对湿度,露点,风轴承,阳光持续时间和当天小时。通过将它们基于前馈,回声状态,1D卷积的长短短期记忆神经网络和随机森林将它们进入五种不同的机器学习模型来评估所选特征的预测性能。我们的长期内记忆解决方案提出了五种型号中的最佳预测性能,预测GHI高达4小时,以24.51%的平均绝对偏差(疯狂)。然后,为了展示利用外源投入对短期GHI预测的有效性,我们将多元模型与单变量的同行进行比较。结果表明,外源性投入显着提高了预测视野大于15分钟的预测性能,在4小时内降低了超过22%的预测,而对于非常短的预测视野(即15分钟),改善可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号