首页> 外文期刊>Expert systems with applications >An efficient multilevel color image thresholding based on modified whale optimization algorithm
【24h】

An efficient multilevel color image thresholding based on modified whale optimization algorithm

机译:基于修改鲸类优化算法的高效多级彩色图像阈值

获取原文
获取原文并翻译 | 示例

摘要

Color image segmentation is a vital preprocessing stage in various image processing applications. In thresholdbased segmentation, the success of the image segmentation depends mainly on the optimal selection of thresholds. The selection of threshold values for multilevel thresholding is indeed a time-consuming process compared to bi-level thresholding. The issue of optimal threshold selection is formulated as an optimization problem in the case of color image segmentation using multilevel thresholding. To optimize the threshold selection for a multilevel color image thresholding, a modified whale optimization algorithm (MWOA) is proposed in this paper. The Otsu's and Kapur's functions have been used in the proposed strategy as a fitness function that can be maximized by MWOA. In the MWOA, the position of the whales is controlled by adapting the cosine function during optimization process. Further, the movements of search agents are regulated during the search process by introducing the correction factors in position updation. These changes incorporated in the MWOA provide a proper balance between the phases of exploration and exploitation and also avoid local optima problem. The performance of the MWOA is evaluated quantitatively and qualitatively based on the best fitness values in terms of PSNR, SSIM, and FSIM, further CPU computing time and Wilcoxon test. The experimental outcomes show that the proposed multilevel optimal color image thresholding using MWOA algorithm yields better performance results in terms of image quality, feature conservation, and convergence rate with less CPU computing time than other state-of-the-art algorithms.
机译:彩色图像分割是各种图像处理应用中的重要预处理阶段。在阈值分割中,图像分割的成功主要取决于最佳选择阈值。与双级阈值相比,多级阈值阈值的阈值确实是耗时的过程。使用多级阈值阈值的彩色图像分割的情况下,将最佳阈值选择的问题作为优化问题。为了优化多级彩色图像阈值的阈值选择,本文提出了一种修改的鲸瓦优化算法(MWOA)。 OTSU和Kapur的功能已被用于所提出的策略,作为可以通过MWOA最大化的健身功能。在MWOA中,通过在优化过程中调整余弦功能来控制鲸鱼的位置。此外,通过在位置更新中引入校正因子,在搜索过程中调节搜索代理的运动。在MWOA中加入的这些变更在勘探和剥削阶段之间提供了适当的平衡,并避免了当地最佳问题。根据PSNR,SSIM和FSIM,进一步的CPU计算时间和WILCOXON测试,定量和定性地评估MWOA的性能。实验结果表明,使用MWOA算法的提出的多级最佳彩色图像阈值化,在图像质量,特征守恒和收敛速率方面,具有比其他最先进的算法更少的CPU计算时间的更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号