首页> 外文期刊>Expert systems with applications >Automatic mass spectra recognition for Ultra High Vacuum systems using multilabel classification
【24h】

Automatic mass spectra recognition for Ultra High Vacuum systems using multilabel classification

机译:使用多织布分类的超高真空系统自动质谱识别

获取原文
获取原文并翻译 | 示例

摘要

In Ultra High-Vacuum (UHV) systems it is common to find a mixture of many gases originating from surface outgassing, leaks and permeation that contaminate vacuum chambers and cause issues to reach ultimate pressures. The identification of these contaminants is, in general, done manually by trained technicians from the analysis of mass spectra. This task is time consuming and can lead to misinterpretation or partial understanding of issues. The challenge resides in the rapid identification of these contaminants by using some automatic gas identification technique. This paper explores the automatic and simultaneous identification of 80 molecules, including some of the most commonly present in this kind of environment by means of multilabel classification techniques. The best performance is drawn from a dependent binary relevance method trained by extreme gradient boosting. We obtain a Hamming loss of 0.0145 in the test set. The mean binary AUC for the test set was 0.986, and the minimum test AUC was higher than 0.89. A public interactive web app has been developed to allow vacuum users to test the model with their own data.
机译:在超高真空(UHV)系统中,常常找到源自表面除气,泄漏和渗透的许多气体的混合物,污染真空室并导致问题达到最终压力。通常,这些污染物的鉴定是通过培训的技术人员手动完成质谱的分析。这项任务是耗时的,可以导致误解或部分地了解问题。通过使用一些自动气体识别技术,挑战在于这些污染物的快速鉴定。本文探讨了80个分子的自动和同时识别,包括通过多套和分类技术在这种环境中最常存在的一些分子。从极端梯度升压训练的依赖二元相关方法中汲取的最佳性能。我们在测试集中获得了0.0145的汉明损失。测试组的平均二值为为0.986,最小测试AUC高于0.89。已经开发出公共交互式Web应用程序来允许真空用户使用自己的数据测试模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号