首页> 外文期刊>Expert systems with applications >A long short-term recurrent spatial-temporal fusion for myoelectric pattern recognition
【24h】

A long short-term recurrent spatial-temporal fusion for myoelectric pattern recognition

机译:一种长期的短期复发性空间融合,用于肌电模式识别

获取原文
获取原文并翻译 | 示例

摘要

Current state-of-the-art myoelectric interfaces employ traditional pattern recognition (PR) algorithms to decode the Electromyogram (EMG) signals into hand movements for controlling artificial limbs. Recently, deep learning (DL) models have also been exploited for EMG feature learning/extraction. Models like Convolutional Neural Networks (CNN), which capture the spatial correlations, and Long Short-Term Memory (LSTM), which capture the non-linear temporal dynamics of EMG time-series data, have been shown to outperform traditional EMG PR systems. Nevertheless, the large number of model parameters, long training times, and large amounts of data required to train these DL models remain limiting factors that may hinder their translation into clinically viable prostheses. Consequently, rather than applying DL directly, this paper leverages concepts derived from these models to build upon our proposed concept of a Fusion of Time Domain Descriptors (FTDD). The FTDD are augmented with Range Spatial Filtering (RSF) to capture the spatial correlations and combined into an LSTMstyle framework. This process, denoted as Recurrent Spatial-Temporal Fusion (RSTF), can be applied in combination with any traditional feature extraction method to exploit temporal and spatial correlations, with the potential for bi-directional applications. The advantages of the proposed RSTF method include (1) the memory concept, capturing long-and short-term spatial and temporal dependencies of the EMG signals, (2) significantly improved performance outperforming other state-of-the-art models and (3) the simplicity and the fairly low computational costs for feature extraction. Results are bench-marked against several feature extraction methods, proving the power of the RSTF using data from 82 subjects from five EMG databases with varying recording characteristics. The proposed method significantly outperforms all other methods tested for EMG pattern recognition, including a deep LSTM and other CNN methods previously reported in the literature and at a fracture of the computational cost. On the most challenging dataset, improvements of as much as 15% were found.
机译:目前最先进的磁电接口采用传统的模式识别(PR)算法来将电灰度(EMG)信号解码成用于控制人造肢体的手动运动。最近,EMG特征学习/提取也被利用了深度学习(DL)模型。捕获空间相关性的模型(CNN),捕获空间相关性,以及捕获EMG时间序列数据的非线性时间动态的长短期存储器(LSTM),已经显示为优于传统的EMG系统。然而,大量的模型参数,长训练时间和培训这些DL模型所需的大量数据仍然是可能阻碍其翻译到临床活性假体的因素的限制因素。因此,这篇论文而不是直接应用DL,利用这些模型的概念来构建我们所提出的时域描述符(FTDD)的融合概念。 FTDD以范围空间滤波(RSF)增强,以捕获空间相关性并将其组合成LSTMStyle框架。该过程表示为反复间隔时间融合(RSTF),可以与任何传统的特征提取方法组合应用,以利用时间和空间相关性,具有双向应用的可能性。所提出的RSTF方法的优点包括(1)存储器概念,捕获EMG信号的长期空间和时间依赖性,(2)显着提高了其他最先进的模型和(3 )特征提取的简单性和相当低的计算成本。结果是针对几种特征提取方法的基准标记,从五个EMG数据库中使用来自82个科目的数据的数据,从而验证了RSTF的功率。所提出的方法显着优于对EMG模式识别进行测试的所有其他方法,包括在文献中先前报道的深层LSTM和其他CNN方法,并以计算成本的骨折。在最具挑战性的数据集中,发现了多达15%的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号