首页> 外文期刊>Expert systems with applications >Joint extraction of entities and overlapping relations using source-target entity labeling
【24h】

Joint extraction of entities and overlapping relations using source-target entity labeling

机译:使用源目标实体标签的联合提取实体和重叠关系

获取原文
获取原文并翻译 | 示例

摘要

Joint extraction of entities and overlapping relations has attracted considerable attention in recent research. Existing relation extraction methods rely on a training set that is labeled by the distant supervision method for supervised relation extraction. However, the drawbacks of these methods are that large-scale unlabeled data cannot be used and the quality of labeled data cannot be guaranteed. Moreover, owing to the relatively complex overlapping relations, it is difficult to perform joint entity-relation extraction accurately. In this study, we propose an end-to-end neural network model (BERT-JEORE) for the joint extraction of entities and overlapping relations. First, we use the BERT-based parameter-sharing layer to capture the joint features of entities and overlapping relations. Then, we implement the source-target BERT model to assign entity labels to each token in a sentence, thereby expanding the amount of labeled data and improving their quality. Finally, we design a threestep overlapping relations extraction model and use it to predict the relations between all entity pairs. Experiments conducted on two public datasets show that BERT-JEORE achieves the best current performance and outperforms the baseline models by a significant margin. Further analysis shows that our model can effectively capture different types of overlapping relational triplets in a sentence.
机译:在最近的研究中,联合提取实体和重叠关系引起了相当大的关注。现有的关系提取方法依赖于由遥控关系提取的远程监控方法标记的培训集。然而,这些方法的缺点是不能使用大规模的未标记数据,并且无法保证标记数据的质量。此外,由于相对复杂的重叠关系,难以精确地执行联合实体关系提取。在这项研究中,我们提出了一种端到端的神经网络模型(BERT-JEORE),用于联合提取实体和重叠关系。首先,我们使用基于BERT的参数共享层来捕获实体的联合特征和重叠关系。然后,我们实现源 - 目标BERT模型以将实体标签分配给句子中的每个令牌,从而扩展标记数据量并提高其质量。最后,我们设计了一个细节重叠关系提取模型,并使用它来预测所有实体对之间的关​​系。在两个公共数据集上进行的实验表明,BERT-JEORE通过显着的边距实现最佳当前的性能并优于基线模型。进一步的分析表明,我们的模型可以有效地捕获句子中的不同类型的重叠关系三元组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号